Step |
Hyp |
Ref |
Expression |
1 |
|
ablsimpgcygd.1 |
⊢ ( 𝜑 → 𝐺 ∈ Abel ) |
2 |
|
ablsimpgcygd.2 |
⊢ ( 𝜑 → 𝐺 ∈ SimpGrp ) |
3 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
4 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
5 |
3 4 2
|
simpgnideld |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ( Base ‘ 𝐺 ) ¬ 𝑥 = ( 0g ‘ 𝐺 ) ) |
6 |
|
eqid |
⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) |
7 |
2
|
simpggrpd |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
8 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ ¬ 𝑥 = ( 0g ‘ 𝐺 ) ) ) → 𝐺 ∈ Grp ) |
9 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ ¬ 𝑥 = ( 0g ‘ 𝐺 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐺 ) ) |
10 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ ¬ 𝑥 = ( 0g ‘ 𝐺 ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → 𝐺 ∈ Abel ) |
11 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ ¬ 𝑥 = ( 0g ‘ 𝐺 ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → 𝐺 ∈ SimpGrp ) |
12 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ ¬ 𝑥 = ( 0g ‘ 𝐺 ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → 𝑥 ∈ ( Base ‘ 𝐺 ) ) |
13 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ ¬ 𝑥 = ( 0g ‘ 𝐺 ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ¬ 𝑥 = ( 0g ‘ 𝐺 ) ) |
14 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ ¬ 𝑥 = ( 0g ‘ 𝐺 ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → 𝑦 ∈ ( Base ‘ 𝐺 ) ) |
15 |
3 4 6 10 11 12 13 14
|
ablsimpg1gend |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ ¬ 𝑥 = ( 0g ‘ 𝐺 ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ∃ 𝑧 ∈ ℤ 𝑦 = ( 𝑧 ( .g ‘ 𝐺 ) 𝑥 ) ) |
16 |
3 6 8 9 15
|
iscygd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ ¬ 𝑥 = ( 0g ‘ 𝐺 ) ) ) → 𝐺 ∈ CycGrp ) |
17 |
5 16
|
rexlimddv |
⊢ ( 𝜑 → 𝐺 ∈ CycGrp ) |