Metamath Proof Explorer


Theorem ablsimpgcygd

Description: An abelian simple group is cyclic. (Contributed by Rohan Ridenour, 3-Aug-2023) (Proof shortened by Rohan Ridenour, 31-Oct-2023)

Ref Expression
Hypotheses ablsimpgcygd.1 ( 𝜑𝐺 ∈ Abel )
ablsimpgcygd.2 ( 𝜑𝐺 ∈ SimpGrp )
Assertion ablsimpgcygd ( 𝜑𝐺 ∈ CycGrp )

Proof

Step Hyp Ref Expression
1 ablsimpgcygd.1 ( 𝜑𝐺 ∈ Abel )
2 ablsimpgcygd.2 ( 𝜑𝐺 ∈ SimpGrp )
3 eqid ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
4 eqid ( 0g𝐺 ) = ( 0g𝐺 )
5 3 4 2 simpgnideld ( 𝜑 → ∃ 𝑥 ∈ ( Base ‘ 𝐺 ) ¬ 𝑥 = ( 0g𝐺 ) )
6 eqid ( .g𝐺 ) = ( .g𝐺 )
7 2 simpggrpd ( 𝜑𝐺 ∈ Grp )
8 7 adantr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ ¬ 𝑥 = ( 0g𝐺 ) ) ) → 𝐺 ∈ Grp )
9 simprl ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ ¬ 𝑥 = ( 0g𝐺 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐺 ) )
10 1 ad2antrr ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ ¬ 𝑥 = ( 0g𝐺 ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → 𝐺 ∈ Abel )
11 2 ad2antrr ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ ¬ 𝑥 = ( 0g𝐺 ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → 𝐺 ∈ SimpGrp )
12 simplrl ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ ¬ 𝑥 = ( 0g𝐺 ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → 𝑥 ∈ ( Base ‘ 𝐺 ) )
13 simplrr ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ ¬ 𝑥 = ( 0g𝐺 ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ¬ 𝑥 = ( 0g𝐺 ) )
14 simpr ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ ¬ 𝑥 = ( 0g𝐺 ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → 𝑦 ∈ ( Base ‘ 𝐺 ) )
15 3 4 6 10 11 12 13 14 ablsimpg1gend ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ ¬ 𝑥 = ( 0g𝐺 ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ∃ 𝑧 ∈ ℤ 𝑦 = ( 𝑧 ( .g𝐺 ) 𝑥 ) )
16 3 6 8 9 15 iscygd ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ ¬ 𝑥 = ( 0g𝐺 ) ) ) → 𝐺 ∈ CycGrp )
17 5 16 rexlimddv ( 𝜑𝐺 ∈ CycGrp )