| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ablsimpg1gend.1 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
ablsimpg1gend.2 |
⊢ 0 = ( 0g ‘ 𝐺 ) |
| 3 |
|
ablsimpg1gend.3 |
⊢ · = ( .g ‘ 𝐺 ) |
| 4 |
|
ablsimpg1gend.4 |
⊢ ( 𝜑 → 𝐺 ∈ Abel ) |
| 5 |
|
ablsimpg1gend.5 |
⊢ ( 𝜑 → 𝐺 ∈ SimpGrp ) |
| 6 |
|
ablsimpg1gend.6 |
⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) |
| 7 |
|
ablsimpg1gend.7 |
⊢ ( 𝜑 → ¬ 𝐴 = 0 ) |
| 8 |
|
ablsimpg1gend.8 |
⊢ ( 𝜑 → 𝐶 ∈ 𝐵 ) |
| 9 |
|
eqid |
⊢ ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝐴 ) ) = ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝐴 ) ) |
| 10 |
5
|
simpggrpd |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 11 |
1 3 9 10 6
|
cycsubgcld |
⊢ ( 𝜑 → ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝐴 ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 12 |
1 3 9 6
|
cycsubggend |
⊢ ( 𝜑 → 𝐴 ∈ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝐴 ) ) ) |
| 13 |
1 2 4 5 11 12 7
|
ablsimpnosubgd |
⊢ ( 𝜑 → ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝐴 ) ) = 𝐵 ) |
| 14 |
8 13
|
eleqtrrd |
⊢ ( 𝜑 → 𝐶 ∈ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝐴 ) ) ) |
| 15 |
9 14
|
elrnmpt2d |
⊢ ( 𝜑 → ∃ 𝑛 ∈ ℤ 𝐶 = ( 𝑛 · 𝐴 ) ) |