Metamath Proof Explorer


Theorem ablsimpg1gend

Description: An abelian simple group is generated by any non-identity element. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses ablsimpg1gend.1 𝐵 = ( Base ‘ 𝐺 )
ablsimpg1gend.2 0 = ( 0g𝐺 )
ablsimpg1gend.3 · = ( .g𝐺 )
ablsimpg1gend.4 ( 𝜑𝐺 ∈ Abel )
ablsimpg1gend.5 ( 𝜑𝐺 ∈ SimpGrp )
ablsimpg1gend.6 ( 𝜑𝐴𝐵 )
ablsimpg1gend.7 ( 𝜑 → ¬ 𝐴 = 0 )
ablsimpg1gend.8 ( 𝜑𝐶𝐵 )
Assertion ablsimpg1gend ( 𝜑 → ∃ 𝑛 ∈ ℤ 𝐶 = ( 𝑛 · 𝐴 ) )

Proof

Step Hyp Ref Expression
1 ablsimpg1gend.1 𝐵 = ( Base ‘ 𝐺 )
2 ablsimpg1gend.2 0 = ( 0g𝐺 )
3 ablsimpg1gend.3 · = ( .g𝐺 )
4 ablsimpg1gend.4 ( 𝜑𝐺 ∈ Abel )
5 ablsimpg1gend.5 ( 𝜑𝐺 ∈ SimpGrp )
6 ablsimpg1gend.6 ( 𝜑𝐴𝐵 )
7 ablsimpg1gend.7 ( 𝜑 → ¬ 𝐴 = 0 )
8 ablsimpg1gend.8 ( 𝜑𝐶𝐵 )
9 eqid ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝐴 ) ) = ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝐴 ) )
10 5 simpggrpd ( 𝜑𝐺 ∈ Grp )
11 1 3 9 10 6 cycsubgcld ( 𝜑 → ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝐴 ) ) ∈ ( SubGrp ‘ 𝐺 ) )
12 1 3 9 6 cycsubggend ( 𝜑𝐴 ∈ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝐴 ) ) )
13 1 2 4 5 11 12 7 ablsimpnosubgd ( 𝜑 → ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝐴 ) ) = 𝐵 )
14 8 13 eleqtrrd ( 𝜑𝐶 ∈ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝐴 ) ) )
15 9 14 elrnmpt2d ( 𝜑 → ∃ 𝑛 ∈ ℤ 𝐶 = ( 𝑛 · 𝐴 ) )