| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ablsimpg1gend.1 | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | ablsimpg1gend.2 | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 3 |  | ablsimpg1gend.3 | ⊢  ·   =  ( .g ‘ 𝐺 ) | 
						
							| 4 |  | ablsimpg1gend.4 | ⊢ ( 𝜑  →  𝐺  ∈  Abel ) | 
						
							| 5 |  | ablsimpg1gend.5 | ⊢ ( 𝜑  →  𝐺  ∈  SimpGrp ) | 
						
							| 6 |  | ablsimpg1gend.6 | ⊢ ( 𝜑  →  𝐴  ∈  𝐵 ) | 
						
							| 7 |  | ablsimpg1gend.7 | ⊢ ( 𝜑  →  ¬  𝐴  =   0  ) | 
						
							| 8 |  | ablsimpg1gend.8 | ⊢ ( 𝜑  →  𝐶  ∈  𝐵 ) | 
						
							| 9 |  | eqid | ⊢ ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝐴 ) )  =  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝐴 ) ) | 
						
							| 10 | 5 | simpggrpd | ⊢ ( 𝜑  →  𝐺  ∈  Grp ) | 
						
							| 11 | 1 3 9 10 6 | cycsubgcld | ⊢ ( 𝜑  →  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝐴 ) )  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 12 | 1 3 9 6 | cycsubggend | ⊢ ( 𝜑  →  𝐴  ∈  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝐴 ) ) ) | 
						
							| 13 | 1 2 4 5 11 12 7 | ablsimpnosubgd | ⊢ ( 𝜑  →  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝐴 ) )  =  𝐵 ) | 
						
							| 14 | 8 13 | eleqtrrd | ⊢ ( 𝜑  →  𝐶  ∈  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝐴 ) ) ) | 
						
							| 15 | 9 14 | elrnmpt2d | ⊢ ( 𝜑  →  ∃ 𝑛  ∈  ℤ 𝐶  =  ( 𝑛  ·  𝐴 ) ) |