| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ablsimpgfindlem1.1 |  |-  B = ( Base ` G ) | 
						
							| 2 |  | ablsimpgfindlem1.2 |  |-  .0. = ( 0g ` G ) | 
						
							| 3 |  | ablsimpgfindlem1.3 |  |-  .x. = ( .g ` G ) | 
						
							| 4 |  | ablsimpgfindlem1.4 |  |-  O = ( od ` G ) | 
						
							| 5 |  | ablsimpgfindlem1.5 |  |-  ( ph -> G e. Abel ) | 
						
							| 6 |  | ablsimpgfindlem1.6 |  |-  ( ph -> G e. SimpGrp ) | 
						
							| 7 | 5 | 3ad2ant1 |  |-  ( ( ph /\ x e. B /\ ( 2 .x. x ) =/= .0. ) -> G e. Abel ) | 
						
							| 8 | 6 | 3ad2ant1 |  |-  ( ( ph /\ x e. B /\ ( 2 .x. x ) =/= .0. ) -> G e. SimpGrp ) | 
						
							| 9 | 6 | simpggrpd |  |-  ( ph -> G e. Grp ) | 
						
							| 10 | 9 | 3ad2ant1 |  |-  ( ( ph /\ x e. B /\ ( 2 .x. x ) =/= .0. ) -> G e. Grp ) | 
						
							| 11 |  | 2z |  |-  2 e. ZZ | 
						
							| 12 | 11 | a1i |  |-  ( ( ph /\ x e. B /\ ( 2 .x. x ) =/= .0. ) -> 2 e. ZZ ) | 
						
							| 13 |  | simp2 |  |-  ( ( ph /\ x e. B /\ ( 2 .x. x ) =/= .0. ) -> x e. B ) | 
						
							| 14 | 1 3 10 12 13 | mulgcld |  |-  ( ( ph /\ x e. B /\ ( 2 .x. x ) =/= .0. ) -> ( 2 .x. x ) e. B ) | 
						
							| 15 |  | simp3 |  |-  ( ( ph /\ x e. B /\ ( 2 .x. x ) =/= .0. ) -> ( 2 .x. x ) =/= .0. ) | 
						
							| 16 | 15 | neneqd |  |-  ( ( ph /\ x e. B /\ ( 2 .x. x ) =/= .0. ) -> -. ( 2 .x. x ) = .0. ) | 
						
							| 17 | 1 2 3 7 8 14 16 13 | ablsimpg1gend |  |-  ( ( ph /\ x e. B /\ ( 2 .x. x ) =/= .0. ) -> E. y e. ZZ x = ( y .x. ( 2 .x. x ) ) ) | 
						
							| 18 |  | simprr |  |-  ( ( ( ph /\ x e. B /\ ( 2 .x. x ) =/= .0. ) /\ ( y e. ZZ /\ x = ( y .x. ( 2 .x. x ) ) ) ) -> x = ( y .x. ( 2 .x. x ) ) ) | 
						
							| 19 |  | simpl2 |  |-  ( ( ( ph /\ x e. B /\ ( 2 .x. x ) =/= .0. ) /\ ( y e. ZZ /\ x = ( y .x. ( 2 .x. x ) ) ) ) -> x e. B ) | 
						
							| 20 | 1 3 | mulg1 |  |-  ( x e. B -> ( 1 .x. x ) = x ) | 
						
							| 21 | 19 20 | syl |  |-  ( ( ( ph /\ x e. B /\ ( 2 .x. x ) =/= .0. ) /\ ( y e. ZZ /\ x = ( y .x. ( 2 .x. x ) ) ) ) -> ( 1 .x. x ) = x ) | 
						
							| 22 | 10 | adantr |  |-  ( ( ( ph /\ x e. B /\ ( 2 .x. x ) =/= .0. ) /\ ( y e. ZZ /\ x = ( y .x. ( 2 .x. x ) ) ) ) -> G e. Grp ) | 
						
							| 23 |  | simprl |  |-  ( ( ( ph /\ x e. B /\ ( 2 .x. x ) =/= .0. ) /\ ( y e. ZZ /\ x = ( y .x. ( 2 .x. x ) ) ) ) -> y e. ZZ ) | 
						
							| 24 | 11 | a1i |  |-  ( ( ( ph /\ x e. B /\ ( 2 .x. x ) =/= .0. ) /\ ( y e. ZZ /\ x = ( y .x. ( 2 .x. x ) ) ) ) -> 2 e. ZZ ) | 
						
							| 25 | 1 3 | mulgassr |  |-  ( ( G e. Grp /\ ( y e. ZZ /\ 2 e. ZZ /\ x e. B ) ) -> ( ( 2 x. y ) .x. x ) = ( y .x. ( 2 .x. x ) ) ) | 
						
							| 26 | 22 23 24 19 25 | syl13anc |  |-  ( ( ( ph /\ x e. B /\ ( 2 .x. x ) =/= .0. ) /\ ( y e. ZZ /\ x = ( y .x. ( 2 .x. x ) ) ) ) -> ( ( 2 x. y ) .x. x ) = ( y .x. ( 2 .x. x ) ) ) | 
						
							| 27 | 18 21 26 | 3eqtr4rd |  |-  ( ( ( ph /\ x e. B /\ ( 2 .x. x ) =/= .0. ) /\ ( y e. ZZ /\ x = ( y .x. ( 2 .x. x ) ) ) ) -> ( ( 2 x. y ) .x. x ) = ( 1 .x. x ) ) | 
						
							| 28 | 24 23 | zmulcld |  |-  ( ( ( ph /\ x e. B /\ ( 2 .x. x ) =/= .0. ) /\ ( y e. ZZ /\ x = ( y .x. ( 2 .x. x ) ) ) ) -> ( 2 x. y ) e. ZZ ) | 
						
							| 29 |  | 1zzd |  |-  ( ( ( ph /\ x e. B /\ ( 2 .x. x ) =/= .0. ) /\ ( y e. ZZ /\ x = ( y .x. ( 2 .x. x ) ) ) ) -> 1 e. ZZ ) | 
						
							| 30 | 1 4 3 2 | odcong |  |-  ( ( G e. Grp /\ x e. B /\ ( ( 2 x. y ) e. ZZ /\ 1 e. ZZ ) ) -> ( ( O ` x ) || ( ( 2 x. y ) - 1 ) <-> ( ( 2 x. y ) .x. x ) = ( 1 .x. x ) ) ) | 
						
							| 31 | 22 19 28 29 30 | syl112anc |  |-  ( ( ( ph /\ x e. B /\ ( 2 .x. x ) =/= .0. ) /\ ( y e. ZZ /\ x = ( y .x. ( 2 .x. x ) ) ) ) -> ( ( O ` x ) || ( ( 2 x. y ) - 1 ) <-> ( ( 2 x. y ) .x. x ) = ( 1 .x. x ) ) ) | 
						
							| 32 | 27 31 | mpbird |  |-  ( ( ( ph /\ x e. B /\ ( 2 .x. x ) =/= .0. ) /\ ( y e. ZZ /\ x = ( y .x. ( 2 .x. x ) ) ) ) -> ( O ` x ) || ( ( 2 x. y ) - 1 ) ) | 
						
							| 33 |  | 0zd |  |-  ( ( ( ph /\ x e. B /\ ( 2 .x. x ) =/= .0. ) /\ ( y e. ZZ /\ x = ( y .x. ( 2 .x. x ) ) ) ) -> 0 e. ZZ ) | 
						
							| 34 |  | zneo |  |-  ( ( y e. ZZ /\ 0 e. ZZ ) -> ( 2 x. y ) =/= ( ( 2 x. 0 ) + 1 ) ) | 
						
							| 35 |  | 2t0e0 |  |-  ( 2 x. 0 ) = 0 | 
						
							| 36 | 35 | oveq1i |  |-  ( ( 2 x. 0 ) + 1 ) = ( 0 + 1 ) | 
						
							| 37 |  | 0p1e1 |  |-  ( 0 + 1 ) = 1 | 
						
							| 38 | 36 37 | eqtri |  |-  ( ( 2 x. 0 ) + 1 ) = 1 | 
						
							| 39 | 38 | a1i |  |-  ( ( y e. ZZ /\ 0 e. ZZ ) -> ( ( 2 x. 0 ) + 1 ) = 1 ) | 
						
							| 40 | 34 39 | neeqtrd |  |-  ( ( y e. ZZ /\ 0 e. ZZ ) -> ( 2 x. y ) =/= 1 ) | 
						
							| 41 |  | oveq1 |  |-  ( ( ( 2 x. y ) - 1 ) = 0 -> ( ( ( 2 x. y ) - 1 ) + 1 ) = ( 0 + 1 ) ) | 
						
							| 42 | 41 37 | eqtr2di |  |-  ( ( ( 2 x. y ) - 1 ) = 0 -> 1 = ( ( ( 2 x. y ) - 1 ) + 1 ) ) | 
						
							| 43 | 42 | adantl |  |-  ( ( y e. ZZ /\ ( ( 2 x. y ) - 1 ) = 0 ) -> 1 = ( ( ( 2 x. y ) - 1 ) + 1 ) ) | 
						
							| 44 |  | 2cnd |  |-  ( y e. ZZ -> 2 e. CC ) | 
						
							| 45 |  | zcn |  |-  ( y e. ZZ -> y e. CC ) | 
						
							| 46 | 44 45 | mulcld |  |-  ( y e. ZZ -> ( 2 x. y ) e. CC ) | 
						
							| 47 |  | 1cnd |  |-  ( ( ( 2 x. y ) - 1 ) = 0 -> 1 e. CC ) | 
						
							| 48 |  | npcan |  |-  ( ( ( 2 x. y ) e. CC /\ 1 e. CC ) -> ( ( ( 2 x. y ) - 1 ) + 1 ) = ( 2 x. y ) ) | 
						
							| 49 | 46 47 48 | syl2an |  |-  ( ( y e. ZZ /\ ( ( 2 x. y ) - 1 ) = 0 ) -> ( ( ( 2 x. y ) - 1 ) + 1 ) = ( 2 x. y ) ) | 
						
							| 50 | 43 49 | eqtr2d |  |-  ( ( y e. ZZ /\ ( ( 2 x. y ) - 1 ) = 0 ) -> ( 2 x. y ) = 1 ) | 
						
							| 51 | 50 | ex |  |-  ( y e. ZZ -> ( ( ( 2 x. y ) - 1 ) = 0 -> ( 2 x. y ) = 1 ) ) | 
						
							| 52 | 51 | necon3ad |  |-  ( y e. ZZ -> ( ( 2 x. y ) =/= 1 -> -. ( ( 2 x. y ) - 1 ) = 0 ) ) | 
						
							| 53 | 40 52 | syl5 |  |-  ( y e. ZZ -> ( ( y e. ZZ /\ 0 e. ZZ ) -> -. ( ( 2 x. y ) - 1 ) = 0 ) ) | 
						
							| 54 | 53 | anabsi5 |  |-  ( ( y e. ZZ /\ 0 e. ZZ ) -> -. ( ( 2 x. y ) - 1 ) = 0 ) | 
						
							| 55 | 23 33 54 | syl2anc |  |-  ( ( ( ph /\ x e. B /\ ( 2 .x. x ) =/= .0. ) /\ ( y e. ZZ /\ x = ( y .x. ( 2 .x. x ) ) ) ) -> -. ( ( 2 x. y ) - 1 ) = 0 ) | 
						
							| 56 | 28 29 | zsubcld |  |-  ( ( ( ph /\ x e. B /\ ( 2 .x. x ) =/= .0. ) /\ ( y e. ZZ /\ x = ( y .x. ( 2 .x. x ) ) ) ) -> ( ( 2 x. y ) - 1 ) e. ZZ ) | 
						
							| 57 |  | 0dvds |  |-  ( ( ( 2 x. y ) - 1 ) e. ZZ -> ( 0 || ( ( 2 x. y ) - 1 ) <-> ( ( 2 x. y ) - 1 ) = 0 ) ) | 
						
							| 58 | 56 57 | syl |  |-  ( ( ( ph /\ x e. B /\ ( 2 .x. x ) =/= .0. ) /\ ( y e. ZZ /\ x = ( y .x. ( 2 .x. x ) ) ) ) -> ( 0 || ( ( 2 x. y ) - 1 ) <-> ( ( 2 x. y ) - 1 ) = 0 ) ) | 
						
							| 59 | 55 58 | mtbird |  |-  ( ( ( ph /\ x e. B /\ ( 2 .x. x ) =/= .0. ) /\ ( y e. ZZ /\ x = ( y .x. ( 2 .x. x ) ) ) ) -> -. 0 || ( ( 2 x. y ) - 1 ) ) | 
						
							| 60 |  | nbrne2 |  |-  ( ( ( O ` x ) || ( ( 2 x. y ) - 1 ) /\ -. 0 || ( ( 2 x. y ) - 1 ) ) -> ( O ` x ) =/= 0 ) | 
						
							| 61 | 32 59 60 | syl2anc |  |-  ( ( ( ph /\ x e. B /\ ( 2 .x. x ) =/= .0. ) /\ ( y e. ZZ /\ x = ( y .x. ( 2 .x. x ) ) ) ) -> ( O ` x ) =/= 0 ) | 
						
							| 62 | 17 61 | rexlimddv |  |-  ( ( ph /\ x e. B /\ ( 2 .x. x ) =/= .0. ) -> ( O ` x ) =/= 0 ) | 
						
							| 63 | 62 | 3expa |  |-  ( ( ( ph /\ x e. B ) /\ ( 2 .x. x ) =/= .0. ) -> ( O ` x ) =/= 0 ) |