Step |
Hyp |
Ref |
Expression |
1 |
|
ablsimpgfindlem1.1 |
|- B = ( Base ` G ) |
2 |
|
ablsimpgfindlem1.2 |
|- .0. = ( 0g ` G ) |
3 |
|
ablsimpgfindlem1.3 |
|- .x. = ( .g ` G ) |
4 |
|
ablsimpgfindlem1.4 |
|- O = ( od ` G ) |
5 |
|
ablsimpgfindlem1.5 |
|- ( ph -> G e. Abel ) |
6 |
|
ablsimpgfindlem1.6 |
|- ( ph -> G e. SimpGrp ) |
7 |
5
|
3ad2ant1 |
|- ( ( ph /\ x e. B /\ ( 2 .x. x ) =/= .0. ) -> G e. Abel ) |
8 |
6
|
3ad2ant1 |
|- ( ( ph /\ x e. B /\ ( 2 .x. x ) =/= .0. ) -> G e. SimpGrp ) |
9 |
6
|
simpggrpd |
|- ( ph -> G e. Grp ) |
10 |
9
|
3ad2ant1 |
|- ( ( ph /\ x e. B /\ ( 2 .x. x ) =/= .0. ) -> G e. Grp ) |
11 |
|
2z |
|- 2 e. ZZ |
12 |
11
|
a1i |
|- ( ( ph /\ x e. B /\ ( 2 .x. x ) =/= .0. ) -> 2 e. ZZ ) |
13 |
|
simp2 |
|- ( ( ph /\ x e. B /\ ( 2 .x. x ) =/= .0. ) -> x e. B ) |
14 |
1 3 10 12 13
|
mulgcld |
|- ( ( ph /\ x e. B /\ ( 2 .x. x ) =/= .0. ) -> ( 2 .x. x ) e. B ) |
15 |
|
simp3 |
|- ( ( ph /\ x e. B /\ ( 2 .x. x ) =/= .0. ) -> ( 2 .x. x ) =/= .0. ) |
16 |
15
|
neneqd |
|- ( ( ph /\ x e. B /\ ( 2 .x. x ) =/= .0. ) -> -. ( 2 .x. x ) = .0. ) |
17 |
1 2 3 7 8 14 16 13
|
ablsimpg1gend |
|- ( ( ph /\ x e. B /\ ( 2 .x. x ) =/= .0. ) -> E. y e. ZZ x = ( y .x. ( 2 .x. x ) ) ) |
18 |
|
simprr |
|- ( ( ( ph /\ x e. B /\ ( 2 .x. x ) =/= .0. ) /\ ( y e. ZZ /\ x = ( y .x. ( 2 .x. x ) ) ) ) -> x = ( y .x. ( 2 .x. x ) ) ) |
19 |
|
simpl2 |
|- ( ( ( ph /\ x e. B /\ ( 2 .x. x ) =/= .0. ) /\ ( y e. ZZ /\ x = ( y .x. ( 2 .x. x ) ) ) ) -> x e. B ) |
20 |
1 3
|
mulg1 |
|- ( x e. B -> ( 1 .x. x ) = x ) |
21 |
19 20
|
syl |
|- ( ( ( ph /\ x e. B /\ ( 2 .x. x ) =/= .0. ) /\ ( y e. ZZ /\ x = ( y .x. ( 2 .x. x ) ) ) ) -> ( 1 .x. x ) = x ) |
22 |
10
|
adantr |
|- ( ( ( ph /\ x e. B /\ ( 2 .x. x ) =/= .0. ) /\ ( y e. ZZ /\ x = ( y .x. ( 2 .x. x ) ) ) ) -> G e. Grp ) |
23 |
|
simprl |
|- ( ( ( ph /\ x e. B /\ ( 2 .x. x ) =/= .0. ) /\ ( y e. ZZ /\ x = ( y .x. ( 2 .x. x ) ) ) ) -> y e. ZZ ) |
24 |
11
|
a1i |
|- ( ( ( ph /\ x e. B /\ ( 2 .x. x ) =/= .0. ) /\ ( y e. ZZ /\ x = ( y .x. ( 2 .x. x ) ) ) ) -> 2 e. ZZ ) |
25 |
1 3
|
mulgassr |
|- ( ( G e. Grp /\ ( y e. ZZ /\ 2 e. ZZ /\ x e. B ) ) -> ( ( 2 x. y ) .x. x ) = ( y .x. ( 2 .x. x ) ) ) |
26 |
22 23 24 19 25
|
syl13anc |
|- ( ( ( ph /\ x e. B /\ ( 2 .x. x ) =/= .0. ) /\ ( y e. ZZ /\ x = ( y .x. ( 2 .x. x ) ) ) ) -> ( ( 2 x. y ) .x. x ) = ( y .x. ( 2 .x. x ) ) ) |
27 |
18 21 26
|
3eqtr4rd |
|- ( ( ( ph /\ x e. B /\ ( 2 .x. x ) =/= .0. ) /\ ( y e. ZZ /\ x = ( y .x. ( 2 .x. x ) ) ) ) -> ( ( 2 x. y ) .x. x ) = ( 1 .x. x ) ) |
28 |
24 23
|
zmulcld |
|- ( ( ( ph /\ x e. B /\ ( 2 .x. x ) =/= .0. ) /\ ( y e. ZZ /\ x = ( y .x. ( 2 .x. x ) ) ) ) -> ( 2 x. y ) e. ZZ ) |
29 |
|
1zzd |
|- ( ( ( ph /\ x e. B /\ ( 2 .x. x ) =/= .0. ) /\ ( y e. ZZ /\ x = ( y .x. ( 2 .x. x ) ) ) ) -> 1 e. ZZ ) |
30 |
1 4 3 2
|
odcong |
|- ( ( G e. Grp /\ x e. B /\ ( ( 2 x. y ) e. ZZ /\ 1 e. ZZ ) ) -> ( ( O ` x ) || ( ( 2 x. y ) - 1 ) <-> ( ( 2 x. y ) .x. x ) = ( 1 .x. x ) ) ) |
31 |
22 19 28 29 30
|
syl112anc |
|- ( ( ( ph /\ x e. B /\ ( 2 .x. x ) =/= .0. ) /\ ( y e. ZZ /\ x = ( y .x. ( 2 .x. x ) ) ) ) -> ( ( O ` x ) || ( ( 2 x. y ) - 1 ) <-> ( ( 2 x. y ) .x. x ) = ( 1 .x. x ) ) ) |
32 |
27 31
|
mpbird |
|- ( ( ( ph /\ x e. B /\ ( 2 .x. x ) =/= .0. ) /\ ( y e. ZZ /\ x = ( y .x. ( 2 .x. x ) ) ) ) -> ( O ` x ) || ( ( 2 x. y ) - 1 ) ) |
33 |
|
0zd |
|- ( ( ( ph /\ x e. B /\ ( 2 .x. x ) =/= .0. ) /\ ( y e. ZZ /\ x = ( y .x. ( 2 .x. x ) ) ) ) -> 0 e. ZZ ) |
34 |
|
zneo |
|- ( ( y e. ZZ /\ 0 e. ZZ ) -> ( 2 x. y ) =/= ( ( 2 x. 0 ) + 1 ) ) |
35 |
|
2t0e0 |
|- ( 2 x. 0 ) = 0 |
36 |
35
|
oveq1i |
|- ( ( 2 x. 0 ) + 1 ) = ( 0 + 1 ) |
37 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
38 |
36 37
|
eqtri |
|- ( ( 2 x. 0 ) + 1 ) = 1 |
39 |
38
|
a1i |
|- ( ( y e. ZZ /\ 0 e. ZZ ) -> ( ( 2 x. 0 ) + 1 ) = 1 ) |
40 |
34 39
|
neeqtrd |
|- ( ( y e. ZZ /\ 0 e. ZZ ) -> ( 2 x. y ) =/= 1 ) |
41 |
|
oveq1 |
|- ( ( ( 2 x. y ) - 1 ) = 0 -> ( ( ( 2 x. y ) - 1 ) + 1 ) = ( 0 + 1 ) ) |
42 |
41 37
|
eqtr2di |
|- ( ( ( 2 x. y ) - 1 ) = 0 -> 1 = ( ( ( 2 x. y ) - 1 ) + 1 ) ) |
43 |
42
|
adantl |
|- ( ( y e. ZZ /\ ( ( 2 x. y ) - 1 ) = 0 ) -> 1 = ( ( ( 2 x. y ) - 1 ) + 1 ) ) |
44 |
|
2cnd |
|- ( y e. ZZ -> 2 e. CC ) |
45 |
|
zcn |
|- ( y e. ZZ -> y e. CC ) |
46 |
44 45
|
mulcld |
|- ( y e. ZZ -> ( 2 x. y ) e. CC ) |
47 |
|
1cnd |
|- ( ( ( 2 x. y ) - 1 ) = 0 -> 1 e. CC ) |
48 |
|
npcan |
|- ( ( ( 2 x. y ) e. CC /\ 1 e. CC ) -> ( ( ( 2 x. y ) - 1 ) + 1 ) = ( 2 x. y ) ) |
49 |
46 47 48
|
syl2an |
|- ( ( y e. ZZ /\ ( ( 2 x. y ) - 1 ) = 0 ) -> ( ( ( 2 x. y ) - 1 ) + 1 ) = ( 2 x. y ) ) |
50 |
43 49
|
eqtr2d |
|- ( ( y e. ZZ /\ ( ( 2 x. y ) - 1 ) = 0 ) -> ( 2 x. y ) = 1 ) |
51 |
50
|
ex |
|- ( y e. ZZ -> ( ( ( 2 x. y ) - 1 ) = 0 -> ( 2 x. y ) = 1 ) ) |
52 |
51
|
necon3ad |
|- ( y e. ZZ -> ( ( 2 x. y ) =/= 1 -> -. ( ( 2 x. y ) - 1 ) = 0 ) ) |
53 |
40 52
|
syl5 |
|- ( y e. ZZ -> ( ( y e. ZZ /\ 0 e. ZZ ) -> -. ( ( 2 x. y ) - 1 ) = 0 ) ) |
54 |
53
|
anabsi5 |
|- ( ( y e. ZZ /\ 0 e. ZZ ) -> -. ( ( 2 x. y ) - 1 ) = 0 ) |
55 |
23 33 54
|
syl2anc |
|- ( ( ( ph /\ x e. B /\ ( 2 .x. x ) =/= .0. ) /\ ( y e. ZZ /\ x = ( y .x. ( 2 .x. x ) ) ) ) -> -. ( ( 2 x. y ) - 1 ) = 0 ) |
56 |
28 29
|
zsubcld |
|- ( ( ( ph /\ x e. B /\ ( 2 .x. x ) =/= .0. ) /\ ( y e. ZZ /\ x = ( y .x. ( 2 .x. x ) ) ) ) -> ( ( 2 x. y ) - 1 ) e. ZZ ) |
57 |
|
0dvds |
|- ( ( ( 2 x. y ) - 1 ) e. ZZ -> ( 0 || ( ( 2 x. y ) - 1 ) <-> ( ( 2 x. y ) - 1 ) = 0 ) ) |
58 |
56 57
|
syl |
|- ( ( ( ph /\ x e. B /\ ( 2 .x. x ) =/= .0. ) /\ ( y e. ZZ /\ x = ( y .x. ( 2 .x. x ) ) ) ) -> ( 0 || ( ( 2 x. y ) - 1 ) <-> ( ( 2 x. y ) - 1 ) = 0 ) ) |
59 |
55 58
|
mtbird |
|- ( ( ( ph /\ x e. B /\ ( 2 .x. x ) =/= .0. ) /\ ( y e. ZZ /\ x = ( y .x. ( 2 .x. x ) ) ) ) -> -. 0 || ( ( 2 x. y ) - 1 ) ) |
60 |
|
nbrne2 |
|- ( ( ( O ` x ) || ( ( 2 x. y ) - 1 ) /\ -. 0 || ( ( 2 x. y ) - 1 ) ) -> ( O ` x ) =/= 0 ) |
61 |
32 59 60
|
syl2anc |
|- ( ( ( ph /\ x e. B /\ ( 2 .x. x ) =/= .0. ) /\ ( y e. ZZ /\ x = ( y .x. ( 2 .x. x ) ) ) ) -> ( O ` x ) =/= 0 ) |
62 |
17 61
|
rexlimddv |
|- ( ( ph /\ x e. B /\ ( 2 .x. x ) =/= .0. ) -> ( O ` x ) =/= 0 ) |
63 |
62
|
3expa |
|- ( ( ( ph /\ x e. B ) /\ ( 2 .x. x ) =/= .0. ) -> ( O ` x ) =/= 0 ) |