| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ablsimpgfind.1 |  |-  B = ( Base ` G ) | 
						
							| 2 |  | ablsimpgfind.2 |  |-  ( ph -> G e. Abel ) | 
						
							| 3 |  | ablsimpgfind.3 |  |-  ( ph -> G e. SimpGrp ) | 
						
							| 4 |  | simpr |  |-  ( ( ph /\ -. B e. Fin ) -> -. B e. Fin ) | 
						
							| 5 | 4 | iffalsed |  |-  ( ( ph /\ -. B e. Fin ) -> if ( B e. Fin , ( # ` B ) , 0 ) = 0 ) | 
						
							| 6 |  | eqid |  |-  ( 0g ` G ) = ( 0g ` G ) | 
						
							| 7 | 1 6 3 | simpgnideld |  |-  ( ph -> E. x e. B -. x = ( 0g ` G ) ) | 
						
							| 8 |  | neqne |  |-  ( -. x = ( 0g ` G ) -> x =/= ( 0g ` G ) ) | 
						
							| 9 | 8 | reximi |  |-  ( E. x e. B -. x = ( 0g ` G ) -> E. x e. B x =/= ( 0g ` G ) ) | 
						
							| 10 | 7 9 | syl |  |-  ( ph -> E. x e. B x =/= ( 0g ` G ) ) | 
						
							| 11 |  | eqid |  |-  ( .g ` G ) = ( .g ` G ) | 
						
							| 12 |  | eqid |  |-  ( od ` G ) = ( od ` G ) | 
						
							| 13 | 3 | simpggrpd |  |-  ( ph -> G e. Grp ) | 
						
							| 14 | 13 | adantr |  |-  ( ( ph /\ ( x e. B /\ x =/= ( 0g ` G ) ) ) -> G e. Grp ) | 
						
							| 15 |  | simprl |  |-  ( ( ph /\ ( x e. B /\ x =/= ( 0g ` G ) ) ) -> x e. B ) | 
						
							| 16 | 2 | ad2antrr |  |-  ( ( ( ph /\ ( x e. B /\ x =/= ( 0g ` G ) ) ) /\ y e. B ) -> G e. Abel ) | 
						
							| 17 | 3 | ad2antrr |  |-  ( ( ( ph /\ ( x e. B /\ x =/= ( 0g ` G ) ) ) /\ y e. B ) -> G e. SimpGrp ) | 
						
							| 18 | 15 | adantr |  |-  ( ( ( ph /\ ( x e. B /\ x =/= ( 0g ` G ) ) ) /\ y e. B ) -> x e. B ) | 
						
							| 19 |  | simplrr |  |-  ( ( ( ph /\ ( x e. B /\ x =/= ( 0g ` G ) ) ) /\ y e. B ) -> x =/= ( 0g ` G ) ) | 
						
							| 20 | 19 | neneqd |  |-  ( ( ( ph /\ ( x e. B /\ x =/= ( 0g ` G ) ) ) /\ y e. B ) -> -. x = ( 0g ` G ) ) | 
						
							| 21 |  | simpr |  |-  ( ( ( ph /\ ( x e. B /\ x =/= ( 0g ` G ) ) ) /\ y e. B ) -> y e. B ) | 
						
							| 22 | 1 6 11 16 17 18 20 21 | ablsimpg1gend |  |-  ( ( ( ph /\ ( x e. B /\ x =/= ( 0g ` G ) ) ) /\ y e. B ) -> E. n e. ZZ y = ( n ( .g ` G ) x ) ) | 
						
							| 23 | 22 | ex |  |-  ( ( ph /\ ( x e. B /\ x =/= ( 0g ` G ) ) ) -> ( y e. B -> E. n e. ZZ y = ( n ( .g ` G ) x ) ) ) | 
						
							| 24 |  | simprr |  |-  ( ( ( ph /\ ( x e. B /\ x =/= ( 0g ` G ) ) ) /\ ( n e. ZZ /\ y = ( n ( .g ` G ) x ) ) ) -> y = ( n ( .g ` G ) x ) ) | 
						
							| 25 | 13 | ad2antrr |  |-  ( ( ( ph /\ ( x e. B /\ x =/= ( 0g ` G ) ) ) /\ ( n e. ZZ /\ y = ( n ( .g ` G ) x ) ) ) -> G e. Grp ) | 
						
							| 26 |  | simprl |  |-  ( ( ( ph /\ ( x e. B /\ x =/= ( 0g ` G ) ) ) /\ ( n e. ZZ /\ y = ( n ( .g ` G ) x ) ) ) -> n e. ZZ ) | 
						
							| 27 | 15 | adantr |  |-  ( ( ( ph /\ ( x e. B /\ x =/= ( 0g ` G ) ) ) /\ ( n e. ZZ /\ y = ( n ( .g ` G ) x ) ) ) -> x e. B ) | 
						
							| 28 | 1 11 25 26 27 | mulgcld |  |-  ( ( ( ph /\ ( x e. B /\ x =/= ( 0g ` G ) ) ) /\ ( n e. ZZ /\ y = ( n ( .g ` G ) x ) ) ) -> ( n ( .g ` G ) x ) e. B ) | 
						
							| 29 | 24 28 | eqeltrd |  |-  ( ( ( ph /\ ( x e. B /\ x =/= ( 0g ` G ) ) ) /\ ( n e. ZZ /\ y = ( n ( .g ` G ) x ) ) ) -> y e. B ) | 
						
							| 30 | 29 | rexlimdvaa |  |-  ( ( ph /\ ( x e. B /\ x =/= ( 0g ` G ) ) ) -> ( E. n e. ZZ y = ( n ( .g ` G ) x ) -> y e. B ) ) | 
						
							| 31 | 23 30 | impbid |  |-  ( ( ph /\ ( x e. B /\ x =/= ( 0g ` G ) ) ) -> ( y e. B <-> E. n e. ZZ y = ( n ( .g ` G ) x ) ) ) | 
						
							| 32 | 31 | eqabdv |  |-  ( ( ph /\ ( x e. B /\ x =/= ( 0g ` G ) ) ) -> B = { y | E. n e. ZZ y = ( n ( .g ` G ) x ) } ) | 
						
							| 33 |  | eqid |  |-  ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = ( n e. ZZ |-> ( n ( .g ` G ) x ) ) | 
						
							| 34 | 33 | rnmpt |  |-  ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = { y | E. n e. ZZ y = ( n ( .g ` G ) x ) } | 
						
							| 35 | 32 34 | eqtr4di |  |-  ( ( ph /\ ( x e. B /\ x =/= ( 0g ` G ) ) ) -> B = ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) ) | 
						
							| 36 | 1 11 12 14 15 35 | cycsubggenodd |  |-  ( ( ph /\ ( x e. B /\ x =/= ( 0g ` G ) ) ) -> ( ( od ` G ) ` x ) = if ( B e. Fin , ( # ` B ) , 0 ) ) | 
						
							| 37 | 1 6 11 12 2 3 | ablsimpgfindlem2 |  |-  ( ( ( ph /\ x e. B ) /\ ( 2 ( .g ` G ) x ) = ( 0g ` G ) ) -> ( ( od ` G ) ` x ) =/= 0 ) | 
						
							| 38 | 1 6 11 12 2 3 | ablsimpgfindlem1 |  |-  ( ( ( ph /\ x e. B ) /\ ( 2 ( .g ` G ) x ) =/= ( 0g ` G ) ) -> ( ( od ` G ) ` x ) =/= 0 ) | 
						
							| 39 | 37 38 | pm2.61dane |  |-  ( ( ph /\ x e. B ) -> ( ( od ` G ) ` x ) =/= 0 ) | 
						
							| 40 | 39 | adantrr |  |-  ( ( ph /\ ( x e. B /\ x =/= ( 0g ` G ) ) ) -> ( ( od ` G ) ` x ) =/= 0 ) | 
						
							| 41 | 36 40 | eqnetrrd |  |-  ( ( ph /\ ( x e. B /\ x =/= ( 0g ` G ) ) ) -> if ( B e. Fin , ( # ` B ) , 0 ) =/= 0 ) | 
						
							| 42 | 10 41 | rexlimddv |  |-  ( ph -> if ( B e. Fin , ( # ` B ) , 0 ) =/= 0 ) | 
						
							| 43 | 42 | adantr |  |-  ( ( ph /\ -. B e. Fin ) -> if ( B e. Fin , ( # ` B ) , 0 ) =/= 0 ) | 
						
							| 44 | 5 43 | pm2.21ddne |  |-  ( ( ph /\ -. B e. Fin ) -> F. ) | 
						
							| 45 | 44 | efald |  |-  ( ph -> B e. Fin ) |