| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ablsimpgfind.1 |
|- B = ( Base ` G ) |
| 2 |
|
ablsimpgfind.2 |
|- ( ph -> G e. Abel ) |
| 3 |
|
ablsimpgfind.3 |
|- ( ph -> G e. SimpGrp ) |
| 4 |
|
simpr |
|- ( ( ph /\ -. B e. Fin ) -> -. B e. Fin ) |
| 5 |
4
|
iffalsed |
|- ( ( ph /\ -. B e. Fin ) -> if ( B e. Fin , ( # ` B ) , 0 ) = 0 ) |
| 6 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
| 7 |
1 6 3
|
simpgnideld |
|- ( ph -> E. x e. B -. x = ( 0g ` G ) ) |
| 8 |
|
neqne |
|- ( -. x = ( 0g ` G ) -> x =/= ( 0g ` G ) ) |
| 9 |
8
|
reximi |
|- ( E. x e. B -. x = ( 0g ` G ) -> E. x e. B x =/= ( 0g ` G ) ) |
| 10 |
7 9
|
syl |
|- ( ph -> E. x e. B x =/= ( 0g ` G ) ) |
| 11 |
|
eqid |
|- ( .g ` G ) = ( .g ` G ) |
| 12 |
|
eqid |
|- ( od ` G ) = ( od ` G ) |
| 13 |
3
|
simpggrpd |
|- ( ph -> G e. Grp ) |
| 14 |
13
|
adantr |
|- ( ( ph /\ ( x e. B /\ x =/= ( 0g ` G ) ) ) -> G e. Grp ) |
| 15 |
|
simprl |
|- ( ( ph /\ ( x e. B /\ x =/= ( 0g ` G ) ) ) -> x e. B ) |
| 16 |
2
|
ad2antrr |
|- ( ( ( ph /\ ( x e. B /\ x =/= ( 0g ` G ) ) ) /\ y e. B ) -> G e. Abel ) |
| 17 |
3
|
ad2antrr |
|- ( ( ( ph /\ ( x e. B /\ x =/= ( 0g ` G ) ) ) /\ y e. B ) -> G e. SimpGrp ) |
| 18 |
15
|
adantr |
|- ( ( ( ph /\ ( x e. B /\ x =/= ( 0g ` G ) ) ) /\ y e. B ) -> x e. B ) |
| 19 |
|
simplrr |
|- ( ( ( ph /\ ( x e. B /\ x =/= ( 0g ` G ) ) ) /\ y e. B ) -> x =/= ( 0g ` G ) ) |
| 20 |
19
|
neneqd |
|- ( ( ( ph /\ ( x e. B /\ x =/= ( 0g ` G ) ) ) /\ y e. B ) -> -. x = ( 0g ` G ) ) |
| 21 |
|
simpr |
|- ( ( ( ph /\ ( x e. B /\ x =/= ( 0g ` G ) ) ) /\ y e. B ) -> y e. B ) |
| 22 |
1 6 11 16 17 18 20 21
|
ablsimpg1gend |
|- ( ( ( ph /\ ( x e. B /\ x =/= ( 0g ` G ) ) ) /\ y e. B ) -> E. n e. ZZ y = ( n ( .g ` G ) x ) ) |
| 23 |
22
|
ex |
|- ( ( ph /\ ( x e. B /\ x =/= ( 0g ` G ) ) ) -> ( y e. B -> E. n e. ZZ y = ( n ( .g ` G ) x ) ) ) |
| 24 |
|
simprr |
|- ( ( ( ph /\ ( x e. B /\ x =/= ( 0g ` G ) ) ) /\ ( n e. ZZ /\ y = ( n ( .g ` G ) x ) ) ) -> y = ( n ( .g ` G ) x ) ) |
| 25 |
13
|
ad2antrr |
|- ( ( ( ph /\ ( x e. B /\ x =/= ( 0g ` G ) ) ) /\ ( n e. ZZ /\ y = ( n ( .g ` G ) x ) ) ) -> G e. Grp ) |
| 26 |
|
simprl |
|- ( ( ( ph /\ ( x e. B /\ x =/= ( 0g ` G ) ) ) /\ ( n e. ZZ /\ y = ( n ( .g ` G ) x ) ) ) -> n e. ZZ ) |
| 27 |
15
|
adantr |
|- ( ( ( ph /\ ( x e. B /\ x =/= ( 0g ` G ) ) ) /\ ( n e. ZZ /\ y = ( n ( .g ` G ) x ) ) ) -> x e. B ) |
| 28 |
1 11 25 26 27
|
mulgcld |
|- ( ( ( ph /\ ( x e. B /\ x =/= ( 0g ` G ) ) ) /\ ( n e. ZZ /\ y = ( n ( .g ` G ) x ) ) ) -> ( n ( .g ` G ) x ) e. B ) |
| 29 |
24 28
|
eqeltrd |
|- ( ( ( ph /\ ( x e. B /\ x =/= ( 0g ` G ) ) ) /\ ( n e. ZZ /\ y = ( n ( .g ` G ) x ) ) ) -> y e. B ) |
| 30 |
29
|
rexlimdvaa |
|- ( ( ph /\ ( x e. B /\ x =/= ( 0g ` G ) ) ) -> ( E. n e. ZZ y = ( n ( .g ` G ) x ) -> y e. B ) ) |
| 31 |
23 30
|
impbid |
|- ( ( ph /\ ( x e. B /\ x =/= ( 0g ` G ) ) ) -> ( y e. B <-> E. n e. ZZ y = ( n ( .g ` G ) x ) ) ) |
| 32 |
31
|
eqabdv |
|- ( ( ph /\ ( x e. B /\ x =/= ( 0g ` G ) ) ) -> B = { y | E. n e. ZZ y = ( n ( .g ` G ) x ) } ) |
| 33 |
|
eqid |
|- ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = ( n e. ZZ |-> ( n ( .g ` G ) x ) ) |
| 34 |
33
|
rnmpt |
|- ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = { y | E. n e. ZZ y = ( n ( .g ` G ) x ) } |
| 35 |
32 34
|
eqtr4di |
|- ( ( ph /\ ( x e. B /\ x =/= ( 0g ` G ) ) ) -> B = ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) ) |
| 36 |
1 11 12 14 15 35
|
cycsubggenodd |
|- ( ( ph /\ ( x e. B /\ x =/= ( 0g ` G ) ) ) -> ( ( od ` G ) ` x ) = if ( B e. Fin , ( # ` B ) , 0 ) ) |
| 37 |
1 6 11 12 2 3
|
ablsimpgfindlem2 |
|- ( ( ( ph /\ x e. B ) /\ ( 2 ( .g ` G ) x ) = ( 0g ` G ) ) -> ( ( od ` G ) ` x ) =/= 0 ) |
| 38 |
1 6 11 12 2 3
|
ablsimpgfindlem1 |
|- ( ( ( ph /\ x e. B ) /\ ( 2 ( .g ` G ) x ) =/= ( 0g ` G ) ) -> ( ( od ` G ) ` x ) =/= 0 ) |
| 39 |
37 38
|
pm2.61dane |
|- ( ( ph /\ x e. B ) -> ( ( od ` G ) ` x ) =/= 0 ) |
| 40 |
39
|
adantrr |
|- ( ( ph /\ ( x e. B /\ x =/= ( 0g ` G ) ) ) -> ( ( od ` G ) ` x ) =/= 0 ) |
| 41 |
36 40
|
eqnetrrd |
|- ( ( ph /\ ( x e. B /\ x =/= ( 0g ` G ) ) ) -> if ( B e. Fin , ( # ` B ) , 0 ) =/= 0 ) |
| 42 |
10 41
|
rexlimddv |
|- ( ph -> if ( B e. Fin , ( # ` B ) , 0 ) =/= 0 ) |
| 43 |
42
|
adantr |
|- ( ( ph /\ -. B e. Fin ) -> if ( B e. Fin , ( # ` B ) , 0 ) =/= 0 ) |
| 44 |
5 43
|
pm2.21ddne |
|- ( ( ph /\ -. B e. Fin ) -> F. ) |
| 45 |
44
|
efald |
|- ( ph -> B e. Fin ) |