| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ablsimpgfindlem1.1 |  |-  B = ( Base ` G ) | 
						
							| 2 |  | ablsimpgfindlem1.2 |  |-  .0. = ( 0g ` G ) | 
						
							| 3 |  | ablsimpgfindlem1.3 |  |-  .x. = ( .g ` G ) | 
						
							| 4 |  | ablsimpgfindlem1.4 |  |-  O = ( od ` G ) | 
						
							| 5 |  | ablsimpgfindlem1.5 |  |-  ( ph -> G e. Abel ) | 
						
							| 6 |  | ablsimpgfindlem1.6 |  |-  ( ph -> G e. SimpGrp ) | 
						
							| 7 |  | simpr |  |-  ( ( ( ph /\ x e. B ) /\ ( 2 .x. x ) = .0. ) -> ( 2 .x. x ) = .0. ) | 
						
							| 8 | 6 | simpggrpd |  |-  ( ph -> G e. Grp ) | 
						
							| 9 | 8 | adantr |  |-  ( ( ph /\ x e. B ) -> G e. Grp ) | 
						
							| 10 |  | simpr |  |-  ( ( ph /\ x e. B ) -> x e. B ) | 
						
							| 11 |  | 2z |  |-  2 e. ZZ | 
						
							| 12 | 11 | a1i |  |-  ( ( ph /\ x e. B ) -> 2 e. ZZ ) | 
						
							| 13 | 9 10 12 | 3jca |  |-  ( ( ph /\ x e. B ) -> ( G e. Grp /\ x e. B /\ 2 e. ZZ ) ) | 
						
							| 14 | 13 | adantr |  |-  ( ( ( ph /\ x e. B ) /\ ( 2 .x. x ) = .0. ) -> ( G e. Grp /\ x e. B /\ 2 e. ZZ ) ) | 
						
							| 15 | 1 4 3 2 | oddvds |  |-  ( ( G e. Grp /\ x e. B /\ 2 e. ZZ ) -> ( ( O ` x ) || 2 <-> ( 2 .x. x ) = .0. ) ) | 
						
							| 16 | 14 15 | syl |  |-  ( ( ( ph /\ x e. B ) /\ ( 2 .x. x ) = .0. ) -> ( ( O ` x ) || 2 <-> ( 2 .x. x ) = .0. ) ) | 
						
							| 17 | 7 16 | mpbird |  |-  ( ( ( ph /\ x e. B ) /\ ( 2 .x. x ) = .0. ) -> ( O ` x ) || 2 ) | 
						
							| 18 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 19 | 18 | a1i |  |-  ( ( ( ph /\ x e. B ) /\ ( 2 .x. x ) = .0. ) -> 2 =/= 0 ) | 
						
							| 20 | 19 | neneqd |  |-  ( ( ( ph /\ x e. B ) /\ ( 2 .x. x ) = .0. ) -> -. 2 = 0 ) | 
						
							| 21 |  | 0dvds |  |-  ( 2 e. ZZ -> ( 0 || 2 <-> 2 = 0 ) ) | 
						
							| 22 | 11 21 | ax-mp |  |-  ( 0 || 2 <-> 2 = 0 ) | 
						
							| 23 | 20 22 | sylnibr |  |-  ( ( ( ph /\ x e. B ) /\ ( 2 .x. x ) = .0. ) -> -. 0 || 2 ) | 
						
							| 24 |  | nbrne2 |  |-  ( ( ( O ` x ) || 2 /\ -. 0 || 2 ) -> ( O ` x ) =/= 0 ) | 
						
							| 25 | 17 23 24 | syl2anc |  |-  ( ( ( ph /\ x e. B ) /\ ( 2 .x. x ) = .0. ) -> ( O ` x ) =/= 0 ) |