| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ablsimpgfindlem1.1 |
|- B = ( Base ` G ) |
| 2 |
|
ablsimpgfindlem1.2 |
|- .0. = ( 0g ` G ) |
| 3 |
|
ablsimpgfindlem1.3 |
|- .x. = ( .g ` G ) |
| 4 |
|
ablsimpgfindlem1.4 |
|- O = ( od ` G ) |
| 5 |
|
ablsimpgfindlem1.5 |
|- ( ph -> G e. Abel ) |
| 6 |
|
ablsimpgfindlem1.6 |
|- ( ph -> G e. SimpGrp ) |
| 7 |
|
simpr |
|- ( ( ( ph /\ x e. B ) /\ ( 2 .x. x ) = .0. ) -> ( 2 .x. x ) = .0. ) |
| 8 |
6
|
simpggrpd |
|- ( ph -> G e. Grp ) |
| 9 |
8
|
adantr |
|- ( ( ph /\ x e. B ) -> G e. Grp ) |
| 10 |
|
simpr |
|- ( ( ph /\ x e. B ) -> x e. B ) |
| 11 |
|
2z |
|- 2 e. ZZ |
| 12 |
11
|
a1i |
|- ( ( ph /\ x e. B ) -> 2 e. ZZ ) |
| 13 |
9 10 12
|
3jca |
|- ( ( ph /\ x e. B ) -> ( G e. Grp /\ x e. B /\ 2 e. ZZ ) ) |
| 14 |
13
|
adantr |
|- ( ( ( ph /\ x e. B ) /\ ( 2 .x. x ) = .0. ) -> ( G e. Grp /\ x e. B /\ 2 e. ZZ ) ) |
| 15 |
1 4 3 2
|
oddvds |
|- ( ( G e. Grp /\ x e. B /\ 2 e. ZZ ) -> ( ( O ` x ) || 2 <-> ( 2 .x. x ) = .0. ) ) |
| 16 |
14 15
|
syl |
|- ( ( ( ph /\ x e. B ) /\ ( 2 .x. x ) = .0. ) -> ( ( O ` x ) || 2 <-> ( 2 .x. x ) = .0. ) ) |
| 17 |
7 16
|
mpbird |
|- ( ( ( ph /\ x e. B ) /\ ( 2 .x. x ) = .0. ) -> ( O ` x ) || 2 ) |
| 18 |
|
2ne0 |
|- 2 =/= 0 |
| 19 |
18
|
a1i |
|- ( ( ( ph /\ x e. B ) /\ ( 2 .x. x ) = .0. ) -> 2 =/= 0 ) |
| 20 |
19
|
neneqd |
|- ( ( ( ph /\ x e. B ) /\ ( 2 .x. x ) = .0. ) -> -. 2 = 0 ) |
| 21 |
|
0dvds |
|- ( 2 e. ZZ -> ( 0 || 2 <-> 2 = 0 ) ) |
| 22 |
11 21
|
ax-mp |
|- ( 0 || 2 <-> 2 = 0 ) |
| 23 |
20 22
|
sylnibr |
|- ( ( ( ph /\ x e. B ) /\ ( 2 .x. x ) = .0. ) -> -. 0 || 2 ) |
| 24 |
|
nbrne2 |
|- ( ( ( O ` x ) || 2 /\ -. 0 || 2 ) -> ( O ` x ) =/= 0 ) |
| 25 |
17 23 24
|
syl2anc |
|- ( ( ( ph /\ x e. B ) /\ ( 2 .x. x ) = .0. ) -> ( O ` x ) =/= 0 ) |