| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fincygsubgodexd.1 |  |-  B = ( Base ` G ) | 
						
							| 2 |  | fincygsubgodexd.2 |  |-  ( ph -> G e. CycGrp ) | 
						
							| 3 |  | fincygsubgodexd.3 |  |-  ( ph -> C || ( # ` B ) ) | 
						
							| 4 |  | fincygsubgodexd.4 |  |-  ( ph -> B e. Fin ) | 
						
							| 5 |  | fincygsubgodexd.5 |  |-  ( ph -> C e. NN ) | 
						
							| 6 |  | eqid |  |-  ( .g ` G ) = ( .g ` G ) | 
						
							| 7 | 1 6 | iscyg |  |-  ( G e. CycGrp <-> ( G e. Grp /\ E. y e. B ran ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = B ) ) | 
						
							| 8 | 7 | simprbi |  |-  ( G e. CycGrp -> E. y e. B ran ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = B ) | 
						
							| 9 | 2 8 | syl |  |-  ( ph -> E. y e. B ran ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = B ) | 
						
							| 10 |  | eqid |  |-  ( n e. ZZ |-> ( n ( .g ` G ) ( ( ( # ` B ) / C ) ( .g ` G ) y ) ) ) = ( n e. ZZ |-> ( n ( .g ` G ) ( ( ( # ` B ) / C ) ( .g ` G ) y ) ) ) | 
						
							| 11 |  | cyggrp |  |-  ( G e. CycGrp -> G e. Grp ) | 
						
							| 12 | 2 11 | syl |  |-  ( ph -> G e. Grp ) | 
						
							| 13 | 12 | adantr |  |-  ( ( ph /\ ( y e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = B ) ) -> G e. Grp ) | 
						
							| 14 |  | simprl |  |-  ( ( ph /\ ( y e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = B ) ) -> y e. B ) | 
						
							| 15 | 1 12 4 | hashfingrpnn |  |-  ( ph -> ( # ` B ) e. NN ) | 
						
							| 16 |  | nndivdvds |  |-  ( ( ( # ` B ) e. NN /\ C e. NN ) -> ( C || ( # ` B ) <-> ( ( # ` B ) / C ) e. NN ) ) | 
						
							| 17 | 15 5 16 | syl2anc |  |-  ( ph -> ( C || ( # ` B ) <-> ( ( # ` B ) / C ) e. NN ) ) | 
						
							| 18 | 3 17 | mpbid |  |-  ( ph -> ( ( # ` B ) / C ) e. NN ) | 
						
							| 19 | 18 | adantr |  |-  ( ( ph /\ ( y e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = B ) ) -> ( ( # ` B ) / C ) e. NN ) | 
						
							| 20 | 1 6 10 13 14 19 | fincygsubgd |  |-  ( ( ph /\ ( y e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = B ) ) -> ran ( n e. ZZ |-> ( n ( .g ` G ) ( ( ( # ` B ) / C ) ( .g ` G ) y ) ) ) e. ( SubGrp ` G ) ) | 
						
							| 21 |  | simpr |  |-  ( ( ( ph /\ ( y e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = B ) ) /\ x = ran ( n e. ZZ |-> ( n ( .g ` G ) ( ( ( # ` B ) / C ) ( .g ` G ) y ) ) ) ) -> x = ran ( n e. ZZ |-> ( n ( .g ` G ) ( ( ( # ` B ) / C ) ( .g ` G ) y ) ) ) ) | 
						
							| 22 | 21 | fveq2d |  |-  ( ( ( ph /\ ( y e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = B ) ) /\ x = ran ( n e. ZZ |-> ( n ( .g ` G ) ( ( ( # ` B ) / C ) ( .g ` G ) y ) ) ) ) -> ( # ` x ) = ( # ` ran ( n e. ZZ |-> ( n ( .g ` G ) ( ( ( # ` B ) / C ) ( .g ` G ) y ) ) ) ) ) | 
						
							| 23 |  | eqid |  |-  ( ( # ` B ) / ( ( # ` B ) / C ) ) = ( ( # ` B ) / ( ( # ` B ) / C ) ) | 
						
							| 24 |  | eqid |  |-  ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = ( n e. ZZ |-> ( n ( .g ` G ) y ) ) | 
						
							| 25 |  | simprr |  |-  ( ( ph /\ ( y e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = B ) ) -> ran ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = B ) | 
						
							| 26 | 5 | nnne0d |  |-  ( ph -> C =/= 0 ) | 
						
							| 27 |  | divconjdvds |  |-  ( ( C || ( # ` B ) /\ C =/= 0 ) -> ( ( # ` B ) / C ) || ( # ` B ) ) | 
						
							| 28 | 3 26 27 | syl2anc |  |-  ( ph -> ( ( # ` B ) / C ) || ( # ` B ) ) | 
						
							| 29 | 28 | adantr |  |-  ( ( ph /\ ( y e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = B ) ) -> ( ( # ` B ) / C ) || ( # ` B ) ) | 
						
							| 30 | 4 | adantr |  |-  ( ( ph /\ ( y e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = B ) ) -> B e. Fin ) | 
						
							| 31 | 1 6 23 24 10 13 14 25 29 30 19 | fincygsubgodd |  |-  ( ( ph /\ ( y e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = B ) ) -> ( # ` ran ( n e. ZZ |-> ( n ( .g ` G ) ( ( ( # ` B ) / C ) ( .g ` G ) y ) ) ) ) = ( ( # ` B ) / ( ( # ` B ) / C ) ) ) | 
						
							| 32 | 31 | adantr |  |-  ( ( ( ph /\ ( y e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = B ) ) /\ x = ran ( n e. ZZ |-> ( n ( .g ` G ) ( ( ( # ` B ) / C ) ( .g ` G ) y ) ) ) ) -> ( # ` ran ( n e. ZZ |-> ( n ( .g ` G ) ( ( ( # ` B ) / C ) ( .g ` G ) y ) ) ) ) = ( ( # ` B ) / ( ( # ` B ) / C ) ) ) | 
						
							| 33 | 15 | nncnd |  |-  ( ph -> ( # ` B ) e. CC ) | 
						
							| 34 | 5 | nncnd |  |-  ( ph -> C e. CC ) | 
						
							| 35 | 15 | nnne0d |  |-  ( ph -> ( # ` B ) =/= 0 ) | 
						
							| 36 | 33 34 35 26 | ddcand |  |-  ( ph -> ( ( # ` B ) / ( ( # ` B ) / C ) ) = C ) | 
						
							| 37 | 36 | ad2antrr |  |-  ( ( ( ph /\ ( y e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = B ) ) /\ x = ran ( n e. ZZ |-> ( n ( .g ` G ) ( ( ( # ` B ) / C ) ( .g ` G ) y ) ) ) ) -> ( ( # ` B ) / ( ( # ` B ) / C ) ) = C ) | 
						
							| 38 | 22 32 37 | 3eqtrd |  |-  ( ( ( ph /\ ( y e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = B ) ) /\ x = ran ( n e. ZZ |-> ( n ( .g ` G ) ( ( ( # ` B ) / C ) ( .g ` G ) y ) ) ) ) -> ( # ` x ) = C ) | 
						
							| 39 | 20 38 | rspcedeq1vd |  |-  ( ( ph /\ ( y e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = B ) ) -> E. x e. ( SubGrp ` G ) ( # ` x ) = C ) | 
						
							| 40 | 9 39 | rexlimddv |  |-  ( ph -> E. x e. ( SubGrp ` G ) ( # ` x ) = C ) |