Step |
Hyp |
Ref |
Expression |
1 |
|
fincygsubgodexd.1 |
|- B = ( Base ` G ) |
2 |
|
fincygsubgodexd.2 |
|- ( ph -> G e. CycGrp ) |
3 |
|
fincygsubgodexd.3 |
|- ( ph -> C || ( # ` B ) ) |
4 |
|
fincygsubgodexd.4 |
|- ( ph -> B e. Fin ) |
5 |
|
fincygsubgodexd.5 |
|- ( ph -> C e. NN ) |
6 |
|
eqid |
|- ( .g ` G ) = ( .g ` G ) |
7 |
1 6
|
iscyg |
|- ( G e. CycGrp <-> ( G e. Grp /\ E. y e. B ran ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = B ) ) |
8 |
7
|
simprbi |
|- ( G e. CycGrp -> E. y e. B ran ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = B ) |
9 |
2 8
|
syl |
|- ( ph -> E. y e. B ran ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = B ) |
10 |
|
eqid |
|- ( n e. ZZ |-> ( n ( .g ` G ) ( ( ( # ` B ) / C ) ( .g ` G ) y ) ) ) = ( n e. ZZ |-> ( n ( .g ` G ) ( ( ( # ` B ) / C ) ( .g ` G ) y ) ) ) |
11 |
|
cyggrp |
|- ( G e. CycGrp -> G e. Grp ) |
12 |
2 11
|
syl |
|- ( ph -> G e. Grp ) |
13 |
12
|
adantr |
|- ( ( ph /\ ( y e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = B ) ) -> G e. Grp ) |
14 |
|
simprl |
|- ( ( ph /\ ( y e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = B ) ) -> y e. B ) |
15 |
1 12 4
|
hashfingrpnn |
|- ( ph -> ( # ` B ) e. NN ) |
16 |
|
nndivdvds |
|- ( ( ( # ` B ) e. NN /\ C e. NN ) -> ( C || ( # ` B ) <-> ( ( # ` B ) / C ) e. NN ) ) |
17 |
15 5 16
|
syl2anc |
|- ( ph -> ( C || ( # ` B ) <-> ( ( # ` B ) / C ) e. NN ) ) |
18 |
3 17
|
mpbid |
|- ( ph -> ( ( # ` B ) / C ) e. NN ) |
19 |
18
|
adantr |
|- ( ( ph /\ ( y e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = B ) ) -> ( ( # ` B ) / C ) e. NN ) |
20 |
1 6 10 13 14 19
|
fincygsubgd |
|- ( ( ph /\ ( y e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = B ) ) -> ran ( n e. ZZ |-> ( n ( .g ` G ) ( ( ( # ` B ) / C ) ( .g ` G ) y ) ) ) e. ( SubGrp ` G ) ) |
21 |
|
simpr |
|- ( ( ( ph /\ ( y e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = B ) ) /\ x = ran ( n e. ZZ |-> ( n ( .g ` G ) ( ( ( # ` B ) / C ) ( .g ` G ) y ) ) ) ) -> x = ran ( n e. ZZ |-> ( n ( .g ` G ) ( ( ( # ` B ) / C ) ( .g ` G ) y ) ) ) ) |
22 |
21
|
fveq2d |
|- ( ( ( ph /\ ( y e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = B ) ) /\ x = ran ( n e. ZZ |-> ( n ( .g ` G ) ( ( ( # ` B ) / C ) ( .g ` G ) y ) ) ) ) -> ( # ` x ) = ( # ` ran ( n e. ZZ |-> ( n ( .g ` G ) ( ( ( # ` B ) / C ) ( .g ` G ) y ) ) ) ) ) |
23 |
|
eqid |
|- ( ( # ` B ) / ( ( # ` B ) / C ) ) = ( ( # ` B ) / ( ( # ` B ) / C ) ) |
24 |
|
eqid |
|- ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = ( n e. ZZ |-> ( n ( .g ` G ) y ) ) |
25 |
|
simprr |
|- ( ( ph /\ ( y e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = B ) ) -> ran ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = B ) |
26 |
5
|
nnne0d |
|- ( ph -> C =/= 0 ) |
27 |
|
divconjdvds |
|- ( ( C || ( # ` B ) /\ C =/= 0 ) -> ( ( # ` B ) / C ) || ( # ` B ) ) |
28 |
3 26 27
|
syl2anc |
|- ( ph -> ( ( # ` B ) / C ) || ( # ` B ) ) |
29 |
28
|
adantr |
|- ( ( ph /\ ( y e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = B ) ) -> ( ( # ` B ) / C ) || ( # ` B ) ) |
30 |
4
|
adantr |
|- ( ( ph /\ ( y e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = B ) ) -> B e. Fin ) |
31 |
1 6 23 24 10 13 14 25 29 30 19
|
fincygsubgodd |
|- ( ( ph /\ ( y e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = B ) ) -> ( # ` ran ( n e. ZZ |-> ( n ( .g ` G ) ( ( ( # ` B ) / C ) ( .g ` G ) y ) ) ) ) = ( ( # ` B ) / ( ( # ` B ) / C ) ) ) |
32 |
31
|
adantr |
|- ( ( ( ph /\ ( y e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = B ) ) /\ x = ran ( n e. ZZ |-> ( n ( .g ` G ) ( ( ( # ` B ) / C ) ( .g ` G ) y ) ) ) ) -> ( # ` ran ( n e. ZZ |-> ( n ( .g ` G ) ( ( ( # ` B ) / C ) ( .g ` G ) y ) ) ) ) = ( ( # ` B ) / ( ( # ` B ) / C ) ) ) |
33 |
15
|
nncnd |
|- ( ph -> ( # ` B ) e. CC ) |
34 |
5
|
nncnd |
|- ( ph -> C e. CC ) |
35 |
15
|
nnne0d |
|- ( ph -> ( # ` B ) =/= 0 ) |
36 |
33 34 35 26
|
ddcand |
|- ( ph -> ( ( # ` B ) / ( ( # ` B ) / C ) ) = C ) |
37 |
36
|
ad2antrr |
|- ( ( ( ph /\ ( y e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = B ) ) /\ x = ran ( n e. ZZ |-> ( n ( .g ` G ) ( ( ( # ` B ) / C ) ( .g ` G ) y ) ) ) ) -> ( ( # ` B ) / ( ( # ` B ) / C ) ) = C ) |
38 |
22 32 37
|
3eqtrd |
|- ( ( ( ph /\ ( y e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = B ) ) /\ x = ran ( n e. ZZ |-> ( n ( .g ` G ) ( ( ( # ` B ) / C ) ( .g ` G ) y ) ) ) ) -> ( # ` x ) = C ) |
39 |
20 38
|
rspcedeq1vd |
|- ( ( ph /\ ( y e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = B ) ) -> E. x e. ( SubGrp ` G ) ( # ` x ) = C ) |
40 |
9 39
|
rexlimddv |
|- ( ph -> E. x e. ( SubGrp ` G ) ( # ` x ) = C ) |