| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fincygsubgodexd.1 |
|- B = ( Base ` G ) |
| 2 |
|
fincygsubgodexd.2 |
|- ( ph -> G e. CycGrp ) |
| 3 |
|
fincygsubgodexd.3 |
|- ( ph -> C || ( # ` B ) ) |
| 4 |
|
fincygsubgodexd.4 |
|- ( ph -> B e. Fin ) |
| 5 |
|
fincygsubgodexd.5 |
|- ( ph -> C e. NN ) |
| 6 |
|
eqid |
|- ( .g ` G ) = ( .g ` G ) |
| 7 |
1 6
|
iscyg |
|- ( G e. CycGrp <-> ( G e. Grp /\ E. y e. B ran ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = B ) ) |
| 8 |
7
|
simprbi |
|- ( G e. CycGrp -> E. y e. B ran ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = B ) |
| 9 |
2 8
|
syl |
|- ( ph -> E. y e. B ran ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = B ) |
| 10 |
|
eqid |
|- ( n e. ZZ |-> ( n ( .g ` G ) ( ( ( # ` B ) / C ) ( .g ` G ) y ) ) ) = ( n e. ZZ |-> ( n ( .g ` G ) ( ( ( # ` B ) / C ) ( .g ` G ) y ) ) ) |
| 11 |
|
cyggrp |
|- ( G e. CycGrp -> G e. Grp ) |
| 12 |
2 11
|
syl |
|- ( ph -> G e. Grp ) |
| 13 |
12
|
adantr |
|- ( ( ph /\ ( y e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = B ) ) -> G e. Grp ) |
| 14 |
|
simprl |
|- ( ( ph /\ ( y e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = B ) ) -> y e. B ) |
| 15 |
1 12 4
|
hashfingrpnn |
|- ( ph -> ( # ` B ) e. NN ) |
| 16 |
|
nndivdvds |
|- ( ( ( # ` B ) e. NN /\ C e. NN ) -> ( C || ( # ` B ) <-> ( ( # ` B ) / C ) e. NN ) ) |
| 17 |
15 5 16
|
syl2anc |
|- ( ph -> ( C || ( # ` B ) <-> ( ( # ` B ) / C ) e. NN ) ) |
| 18 |
3 17
|
mpbid |
|- ( ph -> ( ( # ` B ) / C ) e. NN ) |
| 19 |
18
|
adantr |
|- ( ( ph /\ ( y e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = B ) ) -> ( ( # ` B ) / C ) e. NN ) |
| 20 |
1 6 10 13 14 19
|
fincygsubgd |
|- ( ( ph /\ ( y e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = B ) ) -> ran ( n e. ZZ |-> ( n ( .g ` G ) ( ( ( # ` B ) / C ) ( .g ` G ) y ) ) ) e. ( SubGrp ` G ) ) |
| 21 |
|
simpr |
|- ( ( ( ph /\ ( y e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = B ) ) /\ x = ran ( n e. ZZ |-> ( n ( .g ` G ) ( ( ( # ` B ) / C ) ( .g ` G ) y ) ) ) ) -> x = ran ( n e. ZZ |-> ( n ( .g ` G ) ( ( ( # ` B ) / C ) ( .g ` G ) y ) ) ) ) |
| 22 |
21
|
fveq2d |
|- ( ( ( ph /\ ( y e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = B ) ) /\ x = ran ( n e. ZZ |-> ( n ( .g ` G ) ( ( ( # ` B ) / C ) ( .g ` G ) y ) ) ) ) -> ( # ` x ) = ( # ` ran ( n e. ZZ |-> ( n ( .g ` G ) ( ( ( # ` B ) / C ) ( .g ` G ) y ) ) ) ) ) |
| 23 |
|
eqid |
|- ( ( # ` B ) / ( ( # ` B ) / C ) ) = ( ( # ` B ) / ( ( # ` B ) / C ) ) |
| 24 |
|
eqid |
|- ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = ( n e. ZZ |-> ( n ( .g ` G ) y ) ) |
| 25 |
|
simprr |
|- ( ( ph /\ ( y e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = B ) ) -> ran ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = B ) |
| 26 |
5
|
nnne0d |
|- ( ph -> C =/= 0 ) |
| 27 |
|
divconjdvds |
|- ( ( C || ( # ` B ) /\ C =/= 0 ) -> ( ( # ` B ) / C ) || ( # ` B ) ) |
| 28 |
3 26 27
|
syl2anc |
|- ( ph -> ( ( # ` B ) / C ) || ( # ` B ) ) |
| 29 |
28
|
adantr |
|- ( ( ph /\ ( y e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = B ) ) -> ( ( # ` B ) / C ) || ( # ` B ) ) |
| 30 |
4
|
adantr |
|- ( ( ph /\ ( y e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = B ) ) -> B e. Fin ) |
| 31 |
1 6 23 24 10 13 14 25 29 30 19
|
fincygsubgodd |
|- ( ( ph /\ ( y e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = B ) ) -> ( # ` ran ( n e. ZZ |-> ( n ( .g ` G ) ( ( ( # ` B ) / C ) ( .g ` G ) y ) ) ) ) = ( ( # ` B ) / ( ( # ` B ) / C ) ) ) |
| 32 |
31
|
adantr |
|- ( ( ( ph /\ ( y e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = B ) ) /\ x = ran ( n e. ZZ |-> ( n ( .g ` G ) ( ( ( # ` B ) / C ) ( .g ` G ) y ) ) ) ) -> ( # ` ran ( n e. ZZ |-> ( n ( .g ` G ) ( ( ( # ` B ) / C ) ( .g ` G ) y ) ) ) ) = ( ( # ` B ) / ( ( # ` B ) / C ) ) ) |
| 33 |
15
|
nncnd |
|- ( ph -> ( # ` B ) e. CC ) |
| 34 |
5
|
nncnd |
|- ( ph -> C e. CC ) |
| 35 |
15
|
nnne0d |
|- ( ph -> ( # ` B ) =/= 0 ) |
| 36 |
33 34 35 26
|
ddcand |
|- ( ph -> ( ( # ` B ) / ( ( # ` B ) / C ) ) = C ) |
| 37 |
36
|
ad2antrr |
|- ( ( ( ph /\ ( y e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = B ) ) /\ x = ran ( n e. ZZ |-> ( n ( .g ` G ) ( ( ( # ` B ) / C ) ( .g ` G ) y ) ) ) ) -> ( ( # ` B ) / ( ( # ` B ) / C ) ) = C ) |
| 38 |
22 32 37
|
3eqtrd |
|- ( ( ( ph /\ ( y e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = B ) ) /\ x = ran ( n e. ZZ |-> ( n ( .g ` G ) ( ( ( # ` B ) / C ) ( .g ` G ) y ) ) ) ) -> ( # ` x ) = C ) |
| 39 |
20 38
|
rspcedeq1vd |
|- ( ( ph /\ ( y e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = B ) ) -> E. x e. ( SubGrp ` G ) ( # ` x ) = C ) |
| 40 |
9 39
|
rexlimddv |
|- ( ph -> E. x e. ( SubGrp ` G ) ( # ` x ) = C ) |