| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prmgrpsimpgd.1 |  |-  B = ( Base ` G ) | 
						
							| 2 |  | prmgrpsimpgd.2 |  |-  ( ph -> G e. Grp ) | 
						
							| 3 |  | prmgrpsimpgd.3 |  |-  ( ph -> ( # ` B ) e. Prime ) | 
						
							| 4 |  | eqid |  |-  ( 0g ` G ) = ( 0g ` G ) | 
						
							| 5 |  | fveq2 |  |-  ( { ( 0g ` G ) } = B -> ( # ` { ( 0g ` G ) } ) = ( # ` B ) ) | 
						
							| 6 | 5 | adantl |  |-  ( ( ph /\ { ( 0g ` G ) } = B ) -> ( # ` { ( 0g ` G ) } ) = ( # ` B ) ) | 
						
							| 7 | 4 | fvexi |  |-  ( 0g ` G ) e. _V | 
						
							| 8 |  | hashsng |  |-  ( ( 0g ` G ) e. _V -> ( # ` { ( 0g ` G ) } ) = 1 ) | 
						
							| 9 | 7 8 | mp1i |  |-  ( ( ph /\ { ( 0g ` G ) } = B ) -> ( # ` { ( 0g ` G ) } ) = 1 ) | 
						
							| 10 | 6 9 | eqtr3d |  |-  ( ( ph /\ { ( 0g ` G ) } = B ) -> ( # ` B ) = 1 ) | 
						
							| 11 | 3 | adantr |  |-  ( ( ph /\ { ( 0g ` G ) } = B ) -> ( # ` B ) e. Prime ) | 
						
							| 12 | 10 11 | eqeltrrd |  |-  ( ( ph /\ { ( 0g ` G ) } = B ) -> 1 e. Prime ) | 
						
							| 13 |  | 1nprm |  |-  -. 1 e. Prime | 
						
							| 14 | 13 | a1i |  |-  ( ( ph /\ { ( 0g ` G ) } = B ) -> -. 1 e. Prime ) | 
						
							| 15 | 12 14 | pm2.65da |  |-  ( ph -> -. { ( 0g ` G ) } = B ) | 
						
							| 16 |  | nsgsubg |  |-  ( x e. ( NrmSGrp ` G ) -> x e. ( SubGrp ` G ) ) | 
						
							| 17 |  | eqid |  |-  ( # ` B ) = ( # ` B ) | 
						
							| 18 | 1 | fvexi |  |-  B e. _V | 
						
							| 19 | 18 | a1i |  |-  ( ph -> B e. _V ) | 
						
							| 20 |  | prmnn |  |-  ( ( # ` B ) e. Prime -> ( # ` B ) e. NN ) | 
						
							| 21 | 3 20 | syl |  |-  ( ph -> ( # ` B ) e. NN ) | 
						
							| 22 | 21 | nnnn0d |  |-  ( ph -> ( # ` B ) e. NN0 ) | 
						
							| 23 |  | hashvnfin |  |-  ( ( B e. _V /\ ( # ` B ) e. NN0 ) -> ( ( # ` B ) = ( # ` B ) -> B e. Fin ) ) | 
						
							| 24 | 19 22 23 | syl2anc |  |-  ( ph -> ( ( # ` B ) = ( # ` B ) -> B e. Fin ) ) | 
						
							| 25 | 17 24 | mpi |  |-  ( ph -> B e. Fin ) | 
						
							| 26 | 25 | ad2antrr |  |-  ( ( ( ph /\ x e. ( SubGrp ` G ) ) /\ ( # ` x ) = ( # ` B ) ) -> B e. Fin ) | 
						
							| 27 | 1 | subgss |  |-  ( x e. ( SubGrp ` G ) -> x C_ B ) | 
						
							| 28 | 27 | ad2antlr |  |-  ( ( ( ph /\ x e. ( SubGrp ` G ) ) /\ ( # ` x ) = ( # ` B ) ) -> x C_ B ) | 
						
							| 29 |  | simpr |  |-  ( ( ( ph /\ x e. ( SubGrp ` G ) ) /\ ( # ` x ) = ( # ` B ) ) -> ( # ` x ) = ( # ` B ) ) | 
						
							| 30 | 26 28 29 | phphashrd |  |-  ( ( ( ph /\ x e. ( SubGrp ` G ) ) /\ ( # ` x ) = ( # ` B ) ) -> x = B ) | 
						
							| 31 | 30 | olcd |  |-  ( ( ( ph /\ x e. ( SubGrp ` G ) ) /\ ( # ` x ) = ( # ` B ) ) -> ( x = { ( 0g ` G ) } \/ x = B ) ) | 
						
							| 32 |  | simpr |  |-  ( ( ( ph /\ x e. ( SubGrp ` G ) ) /\ ( # ` x ) = 1 ) -> ( # ` x ) = 1 ) | 
						
							| 33 | 4 | subg0cl |  |-  ( x e. ( SubGrp ` G ) -> ( 0g ` G ) e. x ) | 
						
							| 34 | 33 | ad2antlr |  |-  ( ( ( ph /\ x e. ( SubGrp ` G ) ) /\ ( # ` x ) = 1 ) -> ( 0g ` G ) e. x ) | 
						
							| 35 |  | vex |  |-  x e. _V | 
						
							| 36 | 35 | a1i |  |-  ( ( ( ph /\ x e. ( SubGrp ` G ) ) /\ ( # ` x ) = 1 ) -> x e. _V ) | 
						
							| 37 | 32 34 36 | hash1elsn |  |-  ( ( ( ph /\ x e. ( SubGrp ` G ) ) /\ ( # ` x ) = 1 ) -> x = { ( 0g ` G ) } ) | 
						
							| 38 | 37 | orcd |  |-  ( ( ( ph /\ x e. ( SubGrp ` G ) ) /\ ( # ` x ) = 1 ) -> ( x = { ( 0g ` G ) } \/ x = B ) ) | 
						
							| 39 | 1 | lagsubg |  |-  ( ( x e. ( SubGrp ` G ) /\ B e. Fin ) -> ( # ` x ) || ( # ` B ) ) | 
						
							| 40 | 25 39 | sylan2 |  |-  ( ( x e. ( SubGrp ` G ) /\ ph ) -> ( # ` x ) || ( # ` B ) ) | 
						
							| 41 | 40 | ancoms |  |-  ( ( ph /\ x e. ( SubGrp ` G ) ) -> ( # ` x ) || ( # ` B ) ) | 
						
							| 42 | 3 | adantr |  |-  ( ( ph /\ x e. ( SubGrp ` G ) ) -> ( # ` B ) e. Prime ) | 
						
							| 43 | 25 | adantr |  |-  ( ( ph /\ x e. ( SubGrp ` G ) ) -> B e. Fin ) | 
						
							| 44 | 27 | adantl |  |-  ( ( ph /\ x e. ( SubGrp ` G ) ) -> x C_ B ) | 
						
							| 45 | 43 44 | ssfid |  |-  ( ( ph /\ x e. ( SubGrp ` G ) ) -> x e. Fin ) | 
						
							| 46 |  | hashcl |  |-  ( x e. Fin -> ( # ` x ) e. NN0 ) | 
						
							| 47 | 45 46 | syl |  |-  ( ( ph /\ x e. ( SubGrp ` G ) ) -> ( # ` x ) e. NN0 ) | 
						
							| 48 | 33 | adantl |  |-  ( ( ph /\ x e. ( SubGrp ` G ) ) -> ( 0g ` G ) e. x ) | 
						
							| 49 | 35 | a1i |  |-  ( ( ph /\ x e. ( SubGrp ` G ) ) -> x e. _V ) | 
						
							| 50 | 48 49 | hashelne0d |  |-  ( ( ph /\ x e. ( SubGrp ` G ) ) -> -. ( # ` x ) = 0 ) | 
						
							| 51 | 50 | neqned |  |-  ( ( ph /\ x e. ( SubGrp ` G ) ) -> ( # ` x ) =/= 0 ) | 
						
							| 52 |  | elnnne0 |  |-  ( ( # ` x ) e. NN <-> ( ( # ` x ) e. NN0 /\ ( # ` x ) =/= 0 ) ) | 
						
							| 53 | 47 51 52 | sylanbrc |  |-  ( ( ph /\ x e. ( SubGrp ` G ) ) -> ( # ` x ) e. NN ) | 
						
							| 54 |  | dvdsprime |  |-  ( ( ( # ` B ) e. Prime /\ ( # ` x ) e. NN ) -> ( ( # ` x ) || ( # ` B ) <-> ( ( # ` x ) = ( # ` B ) \/ ( # ` x ) = 1 ) ) ) | 
						
							| 55 | 42 53 54 | syl2anc |  |-  ( ( ph /\ x e. ( SubGrp ` G ) ) -> ( ( # ` x ) || ( # ` B ) <-> ( ( # ` x ) = ( # ` B ) \/ ( # ` x ) = 1 ) ) ) | 
						
							| 56 | 41 55 | mpbid |  |-  ( ( ph /\ x e. ( SubGrp ` G ) ) -> ( ( # ` x ) = ( # ` B ) \/ ( # ` x ) = 1 ) ) | 
						
							| 57 | 31 38 56 | mpjaodan |  |-  ( ( ph /\ x e. ( SubGrp ` G ) ) -> ( x = { ( 0g ` G ) } \/ x = B ) ) | 
						
							| 58 | 16 57 | sylan2 |  |-  ( ( ph /\ x e. ( NrmSGrp ` G ) ) -> ( x = { ( 0g ` G ) } \/ x = B ) ) | 
						
							| 59 | 1 4 2 15 58 | 2nsgsimpgd |  |-  ( ph -> G e. SimpGrp ) |