| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prmgrpsimpgd.1 |
|- B = ( Base ` G ) |
| 2 |
|
prmgrpsimpgd.2 |
|- ( ph -> G e. Grp ) |
| 3 |
|
prmgrpsimpgd.3 |
|- ( ph -> ( # ` B ) e. Prime ) |
| 4 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
| 5 |
|
fveq2 |
|- ( { ( 0g ` G ) } = B -> ( # ` { ( 0g ` G ) } ) = ( # ` B ) ) |
| 6 |
5
|
adantl |
|- ( ( ph /\ { ( 0g ` G ) } = B ) -> ( # ` { ( 0g ` G ) } ) = ( # ` B ) ) |
| 7 |
4
|
fvexi |
|- ( 0g ` G ) e. _V |
| 8 |
|
hashsng |
|- ( ( 0g ` G ) e. _V -> ( # ` { ( 0g ` G ) } ) = 1 ) |
| 9 |
7 8
|
mp1i |
|- ( ( ph /\ { ( 0g ` G ) } = B ) -> ( # ` { ( 0g ` G ) } ) = 1 ) |
| 10 |
6 9
|
eqtr3d |
|- ( ( ph /\ { ( 0g ` G ) } = B ) -> ( # ` B ) = 1 ) |
| 11 |
3
|
adantr |
|- ( ( ph /\ { ( 0g ` G ) } = B ) -> ( # ` B ) e. Prime ) |
| 12 |
10 11
|
eqeltrrd |
|- ( ( ph /\ { ( 0g ` G ) } = B ) -> 1 e. Prime ) |
| 13 |
|
1nprm |
|- -. 1 e. Prime |
| 14 |
13
|
a1i |
|- ( ( ph /\ { ( 0g ` G ) } = B ) -> -. 1 e. Prime ) |
| 15 |
12 14
|
pm2.65da |
|- ( ph -> -. { ( 0g ` G ) } = B ) |
| 16 |
|
nsgsubg |
|- ( x e. ( NrmSGrp ` G ) -> x e. ( SubGrp ` G ) ) |
| 17 |
|
eqid |
|- ( # ` B ) = ( # ` B ) |
| 18 |
1
|
fvexi |
|- B e. _V |
| 19 |
18
|
a1i |
|- ( ph -> B e. _V ) |
| 20 |
|
prmnn |
|- ( ( # ` B ) e. Prime -> ( # ` B ) e. NN ) |
| 21 |
3 20
|
syl |
|- ( ph -> ( # ` B ) e. NN ) |
| 22 |
21
|
nnnn0d |
|- ( ph -> ( # ` B ) e. NN0 ) |
| 23 |
|
hashvnfin |
|- ( ( B e. _V /\ ( # ` B ) e. NN0 ) -> ( ( # ` B ) = ( # ` B ) -> B e. Fin ) ) |
| 24 |
19 22 23
|
syl2anc |
|- ( ph -> ( ( # ` B ) = ( # ` B ) -> B e. Fin ) ) |
| 25 |
17 24
|
mpi |
|- ( ph -> B e. Fin ) |
| 26 |
25
|
ad2antrr |
|- ( ( ( ph /\ x e. ( SubGrp ` G ) ) /\ ( # ` x ) = ( # ` B ) ) -> B e. Fin ) |
| 27 |
1
|
subgss |
|- ( x e. ( SubGrp ` G ) -> x C_ B ) |
| 28 |
27
|
ad2antlr |
|- ( ( ( ph /\ x e. ( SubGrp ` G ) ) /\ ( # ` x ) = ( # ` B ) ) -> x C_ B ) |
| 29 |
|
simpr |
|- ( ( ( ph /\ x e. ( SubGrp ` G ) ) /\ ( # ` x ) = ( # ` B ) ) -> ( # ` x ) = ( # ` B ) ) |
| 30 |
26 28 29
|
phphashrd |
|- ( ( ( ph /\ x e. ( SubGrp ` G ) ) /\ ( # ` x ) = ( # ` B ) ) -> x = B ) |
| 31 |
30
|
olcd |
|- ( ( ( ph /\ x e. ( SubGrp ` G ) ) /\ ( # ` x ) = ( # ` B ) ) -> ( x = { ( 0g ` G ) } \/ x = B ) ) |
| 32 |
|
simpr |
|- ( ( ( ph /\ x e. ( SubGrp ` G ) ) /\ ( # ` x ) = 1 ) -> ( # ` x ) = 1 ) |
| 33 |
4
|
subg0cl |
|- ( x e. ( SubGrp ` G ) -> ( 0g ` G ) e. x ) |
| 34 |
33
|
ad2antlr |
|- ( ( ( ph /\ x e. ( SubGrp ` G ) ) /\ ( # ` x ) = 1 ) -> ( 0g ` G ) e. x ) |
| 35 |
|
vex |
|- x e. _V |
| 36 |
35
|
a1i |
|- ( ( ( ph /\ x e. ( SubGrp ` G ) ) /\ ( # ` x ) = 1 ) -> x e. _V ) |
| 37 |
32 34 36
|
hash1elsn |
|- ( ( ( ph /\ x e. ( SubGrp ` G ) ) /\ ( # ` x ) = 1 ) -> x = { ( 0g ` G ) } ) |
| 38 |
37
|
orcd |
|- ( ( ( ph /\ x e. ( SubGrp ` G ) ) /\ ( # ` x ) = 1 ) -> ( x = { ( 0g ` G ) } \/ x = B ) ) |
| 39 |
1
|
lagsubg |
|- ( ( x e. ( SubGrp ` G ) /\ B e. Fin ) -> ( # ` x ) || ( # ` B ) ) |
| 40 |
25 39
|
sylan2 |
|- ( ( x e. ( SubGrp ` G ) /\ ph ) -> ( # ` x ) || ( # ` B ) ) |
| 41 |
40
|
ancoms |
|- ( ( ph /\ x e. ( SubGrp ` G ) ) -> ( # ` x ) || ( # ` B ) ) |
| 42 |
3
|
adantr |
|- ( ( ph /\ x e. ( SubGrp ` G ) ) -> ( # ` B ) e. Prime ) |
| 43 |
25
|
adantr |
|- ( ( ph /\ x e. ( SubGrp ` G ) ) -> B e. Fin ) |
| 44 |
27
|
adantl |
|- ( ( ph /\ x e. ( SubGrp ` G ) ) -> x C_ B ) |
| 45 |
43 44
|
ssfid |
|- ( ( ph /\ x e. ( SubGrp ` G ) ) -> x e. Fin ) |
| 46 |
|
hashcl |
|- ( x e. Fin -> ( # ` x ) e. NN0 ) |
| 47 |
45 46
|
syl |
|- ( ( ph /\ x e. ( SubGrp ` G ) ) -> ( # ` x ) e. NN0 ) |
| 48 |
33
|
adantl |
|- ( ( ph /\ x e. ( SubGrp ` G ) ) -> ( 0g ` G ) e. x ) |
| 49 |
35
|
a1i |
|- ( ( ph /\ x e. ( SubGrp ` G ) ) -> x e. _V ) |
| 50 |
48 49
|
hashelne0d |
|- ( ( ph /\ x e. ( SubGrp ` G ) ) -> -. ( # ` x ) = 0 ) |
| 51 |
50
|
neqned |
|- ( ( ph /\ x e. ( SubGrp ` G ) ) -> ( # ` x ) =/= 0 ) |
| 52 |
|
elnnne0 |
|- ( ( # ` x ) e. NN <-> ( ( # ` x ) e. NN0 /\ ( # ` x ) =/= 0 ) ) |
| 53 |
47 51 52
|
sylanbrc |
|- ( ( ph /\ x e. ( SubGrp ` G ) ) -> ( # ` x ) e. NN ) |
| 54 |
|
dvdsprime |
|- ( ( ( # ` B ) e. Prime /\ ( # ` x ) e. NN ) -> ( ( # ` x ) || ( # ` B ) <-> ( ( # ` x ) = ( # ` B ) \/ ( # ` x ) = 1 ) ) ) |
| 55 |
42 53 54
|
syl2anc |
|- ( ( ph /\ x e. ( SubGrp ` G ) ) -> ( ( # ` x ) || ( # ` B ) <-> ( ( # ` x ) = ( # ` B ) \/ ( # ` x ) = 1 ) ) ) |
| 56 |
41 55
|
mpbid |
|- ( ( ph /\ x e. ( SubGrp ` G ) ) -> ( ( # ` x ) = ( # ` B ) \/ ( # ` x ) = 1 ) ) |
| 57 |
31 38 56
|
mpjaodan |
|- ( ( ph /\ x e. ( SubGrp ` G ) ) -> ( x = { ( 0g ` G ) } \/ x = B ) ) |
| 58 |
16 57
|
sylan2 |
|- ( ( ph /\ x e. ( NrmSGrp ` G ) ) -> ( x = { ( 0g ` G ) } \/ x = B ) ) |
| 59 |
1 4 2 15 58
|
2nsgsimpgd |
|- ( ph -> G e. SimpGrp ) |