Step |
Hyp |
Ref |
Expression |
1 |
|
prmgrpsimpgd.1 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
prmgrpsimpgd.2 |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
3 |
|
prmgrpsimpgd.3 |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℙ ) |
4 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
5 |
|
fveq2 |
⊢ ( { ( 0g ‘ 𝐺 ) } = 𝐵 → ( ♯ ‘ { ( 0g ‘ 𝐺 ) } ) = ( ♯ ‘ 𝐵 ) ) |
6 |
5
|
adantl |
⊢ ( ( 𝜑 ∧ { ( 0g ‘ 𝐺 ) } = 𝐵 ) → ( ♯ ‘ { ( 0g ‘ 𝐺 ) } ) = ( ♯ ‘ 𝐵 ) ) |
7 |
4
|
fvexi |
⊢ ( 0g ‘ 𝐺 ) ∈ V |
8 |
|
hashsng |
⊢ ( ( 0g ‘ 𝐺 ) ∈ V → ( ♯ ‘ { ( 0g ‘ 𝐺 ) } ) = 1 ) |
9 |
7 8
|
mp1i |
⊢ ( ( 𝜑 ∧ { ( 0g ‘ 𝐺 ) } = 𝐵 ) → ( ♯ ‘ { ( 0g ‘ 𝐺 ) } ) = 1 ) |
10 |
6 9
|
eqtr3d |
⊢ ( ( 𝜑 ∧ { ( 0g ‘ 𝐺 ) } = 𝐵 ) → ( ♯ ‘ 𝐵 ) = 1 ) |
11 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ { ( 0g ‘ 𝐺 ) } = 𝐵 ) → ( ♯ ‘ 𝐵 ) ∈ ℙ ) |
12 |
10 11
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ { ( 0g ‘ 𝐺 ) } = 𝐵 ) → 1 ∈ ℙ ) |
13 |
|
1nprm |
⊢ ¬ 1 ∈ ℙ |
14 |
13
|
a1i |
⊢ ( ( 𝜑 ∧ { ( 0g ‘ 𝐺 ) } = 𝐵 ) → ¬ 1 ∈ ℙ ) |
15 |
12 14
|
pm2.65da |
⊢ ( 𝜑 → ¬ { ( 0g ‘ 𝐺 ) } = 𝐵 ) |
16 |
|
nsgsubg |
⊢ ( 𝑥 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) |
17 |
|
eqid |
⊢ ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 𝐵 ) |
18 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
19 |
18
|
a1i |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
20 |
|
prmnn |
⊢ ( ( ♯ ‘ 𝐵 ) ∈ ℙ → ( ♯ ‘ 𝐵 ) ∈ ℕ ) |
21 |
3 20
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℕ ) |
22 |
21
|
nnnn0d |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
23 |
|
hashvnfin |
⊢ ( ( 𝐵 ∈ V ∧ ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) → ( ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 𝐵 ) → 𝐵 ∈ Fin ) ) |
24 |
19 22 23
|
syl2anc |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 𝐵 ) → 𝐵 ∈ Fin ) ) |
25 |
17 24
|
mpi |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
26 |
25
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) ) → 𝐵 ∈ Fin ) |
27 |
1
|
subgss |
⊢ ( 𝑥 ∈ ( SubGrp ‘ 𝐺 ) → 𝑥 ⊆ 𝐵 ) |
28 |
27
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) ) → 𝑥 ⊆ 𝐵 ) |
29 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) ) |
30 |
26 28 29
|
phphashrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) ) → 𝑥 = 𝐵 ) |
31 |
30
|
olcd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) ) → ( 𝑥 = { ( 0g ‘ 𝐺 ) } ∨ 𝑥 = 𝐵 ) ) |
32 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑥 ) = 1 ) → ( ♯ ‘ 𝑥 ) = 1 ) |
33 |
4
|
subg0cl |
⊢ ( 𝑥 ∈ ( SubGrp ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) ∈ 𝑥 ) |
34 |
33
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑥 ) = 1 ) → ( 0g ‘ 𝐺 ) ∈ 𝑥 ) |
35 |
|
vex |
⊢ 𝑥 ∈ V |
36 |
35
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑥 ) = 1 ) → 𝑥 ∈ V ) |
37 |
32 34 36
|
hash1elsn |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑥 ) = 1 ) → 𝑥 = { ( 0g ‘ 𝐺 ) } ) |
38 |
37
|
orcd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑥 ) = 1 ) → ( 𝑥 = { ( 0g ‘ 𝐺 ) } ∨ 𝑥 = 𝐵 ) ) |
39 |
1
|
lagsubg |
⊢ ( ( 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ 𝑥 ) ∥ ( ♯ ‘ 𝐵 ) ) |
40 |
25 39
|
sylan2 |
⊢ ( ( 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝜑 ) → ( ♯ ‘ 𝑥 ) ∥ ( ♯ ‘ 𝐵 ) ) |
41 |
40
|
ancoms |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ♯ ‘ 𝑥 ) ∥ ( ♯ ‘ 𝐵 ) ) |
42 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ♯ ‘ 𝐵 ) ∈ ℙ ) |
43 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝐵 ∈ Fin ) |
44 |
27
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝑥 ⊆ 𝐵 ) |
45 |
43 44
|
ssfid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝑥 ∈ Fin ) |
46 |
|
hashcl |
⊢ ( 𝑥 ∈ Fin → ( ♯ ‘ 𝑥 ) ∈ ℕ0 ) |
47 |
45 46
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ♯ ‘ 𝑥 ) ∈ ℕ0 ) |
48 |
33
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 0g ‘ 𝐺 ) ∈ 𝑥 ) |
49 |
35
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝑥 ∈ V ) |
50 |
48 49
|
hashelne0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) → ¬ ( ♯ ‘ 𝑥 ) = 0 ) |
51 |
50
|
neqned |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ♯ ‘ 𝑥 ) ≠ 0 ) |
52 |
|
elnnne0 |
⊢ ( ( ♯ ‘ 𝑥 ) ∈ ℕ ↔ ( ( ♯ ‘ 𝑥 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑥 ) ≠ 0 ) ) |
53 |
47 51 52
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ♯ ‘ 𝑥 ) ∈ ℕ ) |
54 |
|
dvdsprime |
⊢ ( ( ( ♯ ‘ 𝐵 ) ∈ ℙ ∧ ( ♯ ‘ 𝑥 ) ∈ ℕ ) → ( ( ♯ ‘ 𝑥 ) ∥ ( ♯ ‘ 𝐵 ) ↔ ( ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) ∨ ( ♯ ‘ 𝑥 ) = 1 ) ) ) |
55 |
42 53 54
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( ♯ ‘ 𝑥 ) ∥ ( ♯ ‘ 𝐵 ) ↔ ( ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) ∨ ( ♯ ‘ 𝑥 ) = 1 ) ) ) |
56 |
41 55
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) ∨ ( ♯ ‘ 𝑥 ) = 1 ) ) |
57 |
31 38 56
|
mpjaodan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑥 = { ( 0g ‘ 𝐺 ) } ∨ 𝑥 = 𝐵 ) ) |
58 |
16 57
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( NrmSGrp ‘ 𝐺 ) ) → ( 𝑥 = { ( 0g ‘ 𝐺 ) } ∨ 𝑥 = 𝐵 ) ) |
59 |
1 4 2 15 58
|
2nsgsimpgd |
⊢ ( 𝜑 → 𝐺 ∈ SimpGrp ) |