| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prmgrpsimpgd.1 | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | prmgrpsimpgd.2 | ⊢ ( 𝜑  →  𝐺  ∈  Grp ) | 
						
							| 3 |  | prmgrpsimpgd.3 | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐵 )  ∈  ℙ ) | 
						
							| 4 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 5 |  | fveq2 | ⊢ ( { ( 0g ‘ 𝐺 ) }  =  𝐵  →  ( ♯ ‘ { ( 0g ‘ 𝐺 ) } )  =  ( ♯ ‘ 𝐵 ) ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( 𝜑  ∧  { ( 0g ‘ 𝐺 ) }  =  𝐵 )  →  ( ♯ ‘ { ( 0g ‘ 𝐺 ) } )  =  ( ♯ ‘ 𝐵 ) ) | 
						
							| 7 | 4 | fvexi | ⊢ ( 0g ‘ 𝐺 )  ∈  V | 
						
							| 8 |  | hashsng | ⊢ ( ( 0g ‘ 𝐺 )  ∈  V  →  ( ♯ ‘ { ( 0g ‘ 𝐺 ) } )  =  1 ) | 
						
							| 9 | 7 8 | mp1i | ⊢ ( ( 𝜑  ∧  { ( 0g ‘ 𝐺 ) }  =  𝐵 )  →  ( ♯ ‘ { ( 0g ‘ 𝐺 ) } )  =  1 ) | 
						
							| 10 | 6 9 | eqtr3d | ⊢ ( ( 𝜑  ∧  { ( 0g ‘ 𝐺 ) }  =  𝐵 )  →  ( ♯ ‘ 𝐵 )  =  1 ) | 
						
							| 11 | 3 | adantr | ⊢ ( ( 𝜑  ∧  { ( 0g ‘ 𝐺 ) }  =  𝐵 )  →  ( ♯ ‘ 𝐵 )  ∈  ℙ ) | 
						
							| 12 | 10 11 | eqeltrrd | ⊢ ( ( 𝜑  ∧  { ( 0g ‘ 𝐺 ) }  =  𝐵 )  →  1  ∈  ℙ ) | 
						
							| 13 |  | 1nprm | ⊢ ¬  1  ∈  ℙ | 
						
							| 14 | 13 | a1i | ⊢ ( ( 𝜑  ∧  { ( 0g ‘ 𝐺 ) }  =  𝐵 )  →  ¬  1  ∈  ℙ ) | 
						
							| 15 | 12 14 | pm2.65da | ⊢ ( 𝜑  →  ¬  { ( 0g ‘ 𝐺 ) }  =  𝐵 ) | 
						
							| 16 |  | nsgsubg | ⊢ ( 𝑥  ∈  ( NrmSGrp ‘ 𝐺 )  →  𝑥  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 17 |  | eqid | ⊢ ( ♯ ‘ 𝐵 )  =  ( ♯ ‘ 𝐵 ) | 
						
							| 18 | 1 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 19 | 18 | a1i | ⊢ ( 𝜑  →  𝐵  ∈  V ) | 
						
							| 20 |  | prmnn | ⊢ ( ( ♯ ‘ 𝐵 )  ∈  ℙ  →  ( ♯ ‘ 𝐵 )  ∈  ℕ ) | 
						
							| 21 | 3 20 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐵 )  ∈  ℕ ) | 
						
							| 22 | 21 | nnnn0d | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐵 )  ∈  ℕ0 ) | 
						
							| 23 |  | hashvnfin | ⊢ ( ( 𝐵  ∈  V  ∧  ( ♯ ‘ 𝐵 )  ∈  ℕ0 )  →  ( ( ♯ ‘ 𝐵 )  =  ( ♯ ‘ 𝐵 )  →  𝐵  ∈  Fin ) ) | 
						
							| 24 | 19 22 23 | syl2anc | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝐵 )  =  ( ♯ ‘ 𝐵 )  →  𝐵  ∈  Fin ) ) | 
						
							| 25 | 17 24 | mpi | ⊢ ( 𝜑  →  𝐵  ∈  Fin ) | 
						
							| 26 | 25 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝐵 ) )  →  𝐵  ∈  Fin ) | 
						
							| 27 | 1 | subgss | ⊢ ( 𝑥  ∈  ( SubGrp ‘ 𝐺 )  →  𝑥  ⊆  𝐵 ) | 
						
							| 28 | 27 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝐵 ) )  →  𝑥  ⊆  𝐵 ) | 
						
							| 29 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝐵 ) )  →  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝐵 ) ) | 
						
							| 30 | 26 28 29 | phphashrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝐵 ) )  →  𝑥  =  𝐵 ) | 
						
							| 31 | 30 | olcd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝐵 ) )  →  ( 𝑥  =  { ( 0g ‘ 𝐺 ) }  ∨  𝑥  =  𝐵 ) ) | 
						
							| 32 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  ( ♯ ‘ 𝑥 )  =  1 )  →  ( ♯ ‘ 𝑥 )  =  1 ) | 
						
							| 33 | 4 | subg0cl | ⊢ ( 𝑥  ∈  ( SubGrp ‘ 𝐺 )  →  ( 0g ‘ 𝐺 )  ∈  𝑥 ) | 
						
							| 34 | 33 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  ( ♯ ‘ 𝑥 )  =  1 )  →  ( 0g ‘ 𝐺 )  ∈  𝑥 ) | 
						
							| 35 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 36 | 35 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  ( ♯ ‘ 𝑥 )  =  1 )  →  𝑥  ∈  V ) | 
						
							| 37 | 32 34 36 | hash1elsn | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  ( ♯ ‘ 𝑥 )  =  1 )  →  𝑥  =  { ( 0g ‘ 𝐺 ) } ) | 
						
							| 38 | 37 | orcd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  ( ♯ ‘ 𝑥 )  =  1 )  →  ( 𝑥  =  { ( 0g ‘ 𝐺 ) }  ∨  𝑥  =  𝐵 ) ) | 
						
							| 39 | 1 | lagsubg | ⊢ ( ( 𝑥  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐵  ∈  Fin )  →  ( ♯ ‘ 𝑥 )  ∥  ( ♯ ‘ 𝐵 ) ) | 
						
							| 40 | 25 39 | sylan2 | ⊢ ( ( 𝑥  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝜑 )  →  ( ♯ ‘ 𝑥 )  ∥  ( ♯ ‘ 𝐵 ) ) | 
						
							| 41 | 40 | ancoms | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( SubGrp ‘ 𝐺 ) )  →  ( ♯ ‘ 𝑥 )  ∥  ( ♯ ‘ 𝐵 ) ) | 
						
							| 42 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( SubGrp ‘ 𝐺 ) )  →  ( ♯ ‘ 𝐵 )  ∈  ℙ ) | 
						
							| 43 | 25 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( SubGrp ‘ 𝐺 ) )  →  𝐵  ∈  Fin ) | 
						
							| 44 | 27 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( SubGrp ‘ 𝐺 ) )  →  𝑥  ⊆  𝐵 ) | 
						
							| 45 | 43 44 | ssfid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( SubGrp ‘ 𝐺 ) )  →  𝑥  ∈  Fin ) | 
						
							| 46 |  | hashcl | ⊢ ( 𝑥  ∈  Fin  →  ( ♯ ‘ 𝑥 )  ∈  ℕ0 ) | 
						
							| 47 | 45 46 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( SubGrp ‘ 𝐺 ) )  →  ( ♯ ‘ 𝑥 )  ∈  ℕ0 ) | 
						
							| 48 | 33 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( SubGrp ‘ 𝐺 ) )  →  ( 0g ‘ 𝐺 )  ∈  𝑥 ) | 
						
							| 49 | 35 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( SubGrp ‘ 𝐺 ) )  →  𝑥  ∈  V ) | 
						
							| 50 | 48 49 | hashelne0d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( SubGrp ‘ 𝐺 ) )  →  ¬  ( ♯ ‘ 𝑥 )  =  0 ) | 
						
							| 51 | 50 | neqned | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( SubGrp ‘ 𝐺 ) )  →  ( ♯ ‘ 𝑥 )  ≠  0 ) | 
						
							| 52 |  | elnnne0 | ⊢ ( ( ♯ ‘ 𝑥 )  ∈  ℕ  ↔  ( ( ♯ ‘ 𝑥 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑥 )  ≠  0 ) ) | 
						
							| 53 | 47 51 52 | sylanbrc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( SubGrp ‘ 𝐺 ) )  →  ( ♯ ‘ 𝑥 )  ∈  ℕ ) | 
						
							| 54 |  | dvdsprime | ⊢ ( ( ( ♯ ‘ 𝐵 )  ∈  ℙ  ∧  ( ♯ ‘ 𝑥 )  ∈  ℕ )  →  ( ( ♯ ‘ 𝑥 )  ∥  ( ♯ ‘ 𝐵 )  ↔  ( ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝐵 )  ∨  ( ♯ ‘ 𝑥 )  =  1 ) ) ) | 
						
							| 55 | 42 53 54 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( SubGrp ‘ 𝐺 ) )  →  ( ( ♯ ‘ 𝑥 )  ∥  ( ♯ ‘ 𝐵 )  ↔  ( ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝐵 )  ∨  ( ♯ ‘ 𝑥 )  =  1 ) ) ) | 
						
							| 56 | 41 55 | mpbid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( SubGrp ‘ 𝐺 ) )  →  ( ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝐵 )  ∨  ( ♯ ‘ 𝑥 )  =  1 ) ) | 
						
							| 57 | 31 38 56 | mpjaodan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( SubGrp ‘ 𝐺 ) )  →  ( 𝑥  =  { ( 0g ‘ 𝐺 ) }  ∨  𝑥  =  𝐵 ) ) | 
						
							| 58 | 16 57 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( NrmSGrp ‘ 𝐺 ) )  →  ( 𝑥  =  { ( 0g ‘ 𝐺 ) }  ∨  𝑥  =  𝐵 ) ) | 
						
							| 59 | 1 4 2 15 58 | 2nsgsimpgd | ⊢ ( 𝜑  →  𝐺  ∈  SimpGrp ) |