Step |
Hyp |
Ref |
Expression |
1 |
|
ablsimpgprmd.1 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
ablsimpgprmd.2 |
⊢ ( 𝜑 → 𝐺 ∈ Abel ) |
3 |
|
ablsimpgprmd.3 |
⊢ ( 𝜑 → 𝐺 ∈ SimpGrp ) |
4 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝐵 ) = 1 ) → ( ♯ ‘ 𝐵 ) = 1 ) |
5 |
3
|
simpggrpd |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
6 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
7 |
1 6
|
grpidcl |
⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
8 |
5 7
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
9 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝐵 ) = 1 ) → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
10 |
1 2 3
|
ablsimpgfind |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝐵 ) = 1 ) → 𝐵 ∈ Fin ) |
12 |
4 9 11
|
hash1elsn |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝐵 ) = 1 ) → 𝐵 = { ( 0g ‘ 𝐺 ) } ) |
13 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝐵 ) = 1 ) → 𝐺 ∈ SimpGrp ) |
14 |
1 6 13
|
simpgntrivd |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝐵 ) = 1 ) → ¬ 𝐵 = { ( 0g ‘ 𝐺 ) } ) |
15 |
12 14
|
pm2.65da |
⊢ ( 𝜑 → ¬ ( ♯ ‘ 𝐵 ) = 1 ) |
16 |
1 5 10
|
hashfingrpnn |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℕ ) |
17 |
|
elnn1uz2 |
⊢ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ↔ ( ( ♯ ‘ 𝐵 ) = 1 ∨ ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ) ) |
18 |
16 17
|
sylib |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐵 ) = 1 ∨ ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ) ) |
19 |
18
|
ord |
⊢ ( 𝜑 → ( ¬ ( ♯ ‘ 𝐵 ) = 1 → ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ) ) |
20 |
15 19
|
mpd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ) |
21 |
2 3
|
ablsimpgcygd |
⊢ ( 𝜑 → 𝐺 ∈ CycGrp ) |
22 |
21
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ ( ♯ ‘ 𝐵 ) ) → 𝐺 ∈ CycGrp ) |
23 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ ( ♯ ‘ 𝐵 ) ) → 𝑦 ∥ ( ♯ ‘ 𝐵 ) ) |
24 |
10
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ ( ♯ ‘ 𝐵 ) ) → 𝐵 ∈ Fin ) |
25 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ ( ♯ ‘ 𝐵 ) ) → 𝑦 ∈ ℕ ) |
26 |
1 22 23 24 25
|
fincygsubgodexd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ ( ♯ ‘ 𝐵 ) ) → ∃ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ( ♯ ‘ 𝑥 ) = 𝑦 ) |
27 |
|
simpl1 |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ ( ♯ ‘ 𝐵 ) ) ∧ ( 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = 𝑦 ) ) → 𝜑 ) |
28 |
27 3
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ ( ♯ ‘ 𝐵 ) ) ∧ ( 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = 𝑦 ) ) → 𝐺 ∈ SimpGrp ) |
29 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ ( ♯ ‘ 𝐵 ) ) ∧ ( 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = 𝑦 ) ) → 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) |
30 |
|
ablnsg |
⊢ ( 𝐺 ∈ Abel → ( NrmSGrp ‘ 𝐺 ) = ( SubGrp ‘ 𝐺 ) ) |
31 |
27 2 30
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ ( ♯ ‘ 𝐵 ) ) ∧ ( 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = 𝑦 ) ) → ( NrmSGrp ‘ 𝐺 ) = ( SubGrp ‘ 𝐺 ) ) |
32 |
29 31
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ ( ♯ ‘ 𝐵 ) ) ∧ ( 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = 𝑦 ) ) → 𝑥 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
33 |
1 6 28 32
|
simpgnsgeqd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ ( ♯ ‘ 𝐵 ) ) ∧ ( 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = 𝑦 ) ) → ( 𝑥 = { ( 0g ‘ 𝐺 ) } ∨ 𝑥 = 𝐵 ) ) |
34 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ ( ♯ ‘ 𝐵 ) ) ∧ ( 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = 𝑦 ) ) ∧ 𝑥 = { ( 0g ‘ 𝐺 ) } ) → 𝑥 = { ( 0g ‘ 𝐺 ) } ) |
35 |
34
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ ( ♯ ‘ 𝐵 ) ) ∧ ( 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = 𝑦 ) ) ∧ 𝑥 = { ( 0g ‘ 𝐺 ) } ) → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ { ( 0g ‘ 𝐺 ) } ) ) |
36 |
|
simplrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ ( ♯ ‘ 𝐵 ) ) ∧ ( 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = 𝑦 ) ) ∧ 𝑥 = { ( 0g ‘ 𝐺 ) } ) → ( ♯ ‘ 𝑥 ) = 𝑦 ) |
37 |
6
|
fvexi |
⊢ ( 0g ‘ 𝐺 ) ∈ V |
38 |
|
hashsng |
⊢ ( ( 0g ‘ 𝐺 ) ∈ V → ( ♯ ‘ { ( 0g ‘ 𝐺 ) } ) = 1 ) |
39 |
37 38
|
mp1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ ( ♯ ‘ 𝐵 ) ) ∧ ( 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = 𝑦 ) ) ∧ 𝑥 = { ( 0g ‘ 𝐺 ) } ) → ( ♯ ‘ { ( 0g ‘ 𝐺 ) } ) = 1 ) |
40 |
35 36 39
|
3eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ ( ♯ ‘ 𝐵 ) ) ∧ ( 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = 𝑦 ) ) ∧ 𝑥 = { ( 0g ‘ 𝐺 ) } ) → 𝑦 = 1 ) |
41 |
40
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ ( ♯ ‘ 𝐵 ) ) ∧ ( 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = 𝑦 ) ) → ( 𝑥 = { ( 0g ‘ 𝐺 ) } → 𝑦 = 1 ) ) |
42 |
|
simplrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ ( ♯ ‘ 𝐵 ) ) ∧ ( 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = 𝑦 ) ) ∧ 𝑥 = 𝐵 ) → ( ♯ ‘ 𝑥 ) = 𝑦 ) |
43 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ ( ♯ ‘ 𝐵 ) ) ∧ ( 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = 𝑦 ) ) ∧ 𝑥 = 𝐵 ) → 𝑥 = 𝐵 ) |
44 |
43
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ ( ♯ ‘ 𝐵 ) ) ∧ ( 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = 𝑦 ) ) ∧ 𝑥 = 𝐵 ) → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) ) |
45 |
42 44
|
eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ ( ♯ ‘ 𝐵 ) ) ∧ ( 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = 𝑦 ) ) ∧ 𝑥 = 𝐵 ) → 𝑦 = ( ♯ ‘ 𝐵 ) ) |
46 |
45
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ ( ♯ ‘ 𝐵 ) ) ∧ ( 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = 𝑦 ) ) → ( 𝑥 = 𝐵 → 𝑦 = ( ♯ ‘ 𝐵 ) ) ) |
47 |
41 46
|
orim12d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ ( ♯ ‘ 𝐵 ) ) ∧ ( 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = 𝑦 ) ) → ( ( 𝑥 = { ( 0g ‘ 𝐺 ) } ∨ 𝑥 = 𝐵 ) → ( 𝑦 = 1 ∨ 𝑦 = ( ♯ ‘ 𝐵 ) ) ) ) |
48 |
33 47
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ ( ♯ ‘ 𝐵 ) ) ∧ ( 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = 𝑦 ) ) → ( 𝑦 = 1 ∨ 𝑦 = ( ♯ ‘ 𝐵 ) ) ) |
49 |
26 48
|
rexlimddv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ ( ♯ ‘ 𝐵 ) ) → ( 𝑦 = 1 ∨ 𝑦 = ( ♯ ‘ 𝐵 ) ) ) |
50 |
49
|
3exp |
⊢ ( 𝜑 → ( 𝑦 ∈ ℕ → ( 𝑦 ∥ ( ♯ ‘ 𝐵 ) → ( 𝑦 = 1 ∨ 𝑦 = ( ♯ ‘ 𝐵 ) ) ) ) ) |
51 |
50
|
ralrimiv |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ℕ ( 𝑦 ∥ ( ♯ ‘ 𝐵 ) → ( 𝑦 = 1 ∨ 𝑦 = ( ♯ ‘ 𝐵 ) ) ) ) |
52 |
|
isprm2 |
⊢ ( ( ♯ ‘ 𝐵 ) ∈ ℙ ↔ ( ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑦 ∈ ℕ ( 𝑦 ∥ ( ♯ ‘ 𝐵 ) → ( 𝑦 = 1 ∨ 𝑦 = ( ♯ ‘ 𝐵 ) ) ) ) ) |
53 |
20 51 52
|
sylanbrc |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℙ ) |