| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ablsimpgprmd.1 | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | ablsimpgprmd.2 | ⊢ ( 𝜑  →  𝐺  ∈  Abel ) | 
						
							| 3 |  | ablsimpgprmd.3 | ⊢ ( 𝜑  →  𝐺  ∈  SimpGrp ) | 
						
							| 4 |  | simpr | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝐵 )  =  1 )  →  ( ♯ ‘ 𝐵 )  =  1 ) | 
						
							| 5 | 3 | simpggrpd | ⊢ ( 𝜑  →  𝐺  ∈  Grp ) | 
						
							| 6 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 7 | 1 6 | grpidcl | ⊢ ( 𝐺  ∈  Grp  →  ( 0g ‘ 𝐺 )  ∈  𝐵 ) | 
						
							| 8 | 5 7 | syl | ⊢ ( 𝜑  →  ( 0g ‘ 𝐺 )  ∈  𝐵 ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝐵 )  =  1 )  →  ( 0g ‘ 𝐺 )  ∈  𝐵 ) | 
						
							| 10 | 1 2 3 | ablsimpgfind | ⊢ ( 𝜑  →  𝐵  ∈  Fin ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝐵 )  =  1 )  →  𝐵  ∈  Fin ) | 
						
							| 12 | 4 9 11 | hash1elsn | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝐵 )  =  1 )  →  𝐵  =  { ( 0g ‘ 𝐺 ) } ) | 
						
							| 13 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝐵 )  =  1 )  →  𝐺  ∈  SimpGrp ) | 
						
							| 14 | 1 6 13 | simpgntrivd | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝐵 )  =  1 )  →  ¬  𝐵  =  { ( 0g ‘ 𝐺 ) } ) | 
						
							| 15 | 12 14 | pm2.65da | ⊢ ( 𝜑  →  ¬  ( ♯ ‘ 𝐵 )  =  1 ) | 
						
							| 16 | 1 5 10 | hashfingrpnn | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐵 )  ∈  ℕ ) | 
						
							| 17 |  | elnn1uz2 | ⊢ ( ( ♯ ‘ 𝐵 )  ∈  ℕ  ↔  ( ( ♯ ‘ 𝐵 )  =  1  ∨  ( ♯ ‘ 𝐵 )  ∈  ( ℤ≥ ‘ 2 ) ) ) | 
						
							| 18 | 16 17 | sylib | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝐵 )  =  1  ∨  ( ♯ ‘ 𝐵 )  ∈  ( ℤ≥ ‘ 2 ) ) ) | 
						
							| 19 | 18 | ord | ⊢ ( 𝜑  →  ( ¬  ( ♯ ‘ 𝐵 )  =  1  →  ( ♯ ‘ 𝐵 )  ∈  ( ℤ≥ ‘ 2 ) ) ) | 
						
							| 20 | 15 19 | mpd | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐵 )  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 21 | 2 3 | ablsimpgcygd | ⊢ ( 𝜑  →  𝐺  ∈  CycGrp ) | 
						
							| 22 | 21 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  𝑦  ∥  ( ♯ ‘ 𝐵 ) )  →  𝐺  ∈  CycGrp ) | 
						
							| 23 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  𝑦  ∥  ( ♯ ‘ 𝐵 ) )  →  𝑦  ∥  ( ♯ ‘ 𝐵 ) ) | 
						
							| 24 | 10 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  𝑦  ∥  ( ♯ ‘ 𝐵 ) )  →  𝐵  ∈  Fin ) | 
						
							| 25 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  𝑦  ∥  ( ♯ ‘ 𝐵 ) )  →  𝑦  ∈  ℕ ) | 
						
							| 26 | 1 22 23 24 25 | fincygsubgodexd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  𝑦  ∥  ( ♯ ‘ 𝐵 ) )  →  ∃ 𝑥  ∈  ( SubGrp ‘ 𝐺 ) ( ♯ ‘ 𝑥 )  =  𝑦 ) | 
						
							| 27 |  | simpl1 | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  𝑦  ∥  ( ♯ ‘ 𝐵 ) )  ∧  ( 𝑥  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  𝑦 ) )  →  𝜑 ) | 
						
							| 28 | 27 3 | syl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  𝑦  ∥  ( ♯ ‘ 𝐵 ) )  ∧  ( 𝑥  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  𝑦 ) )  →  𝐺  ∈  SimpGrp ) | 
						
							| 29 |  | simprl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  𝑦  ∥  ( ♯ ‘ 𝐵 ) )  ∧  ( 𝑥  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  𝑦 ) )  →  𝑥  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 30 |  | ablnsg | ⊢ ( 𝐺  ∈  Abel  →  ( NrmSGrp ‘ 𝐺 )  =  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 31 | 27 2 30 | 3syl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  𝑦  ∥  ( ♯ ‘ 𝐵 ) )  ∧  ( 𝑥  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  𝑦 ) )  →  ( NrmSGrp ‘ 𝐺 )  =  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 32 | 29 31 | eleqtrrd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  𝑦  ∥  ( ♯ ‘ 𝐵 ) )  ∧  ( 𝑥  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  𝑦 ) )  →  𝑥  ∈  ( NrmSGrp ‘ 𝐺 ) ) | 
						
							| 33 | 1 6 28 32 | simpgnsgeqd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  𝑦  ∥  ( ♯ ‘ 𝐵 ) )  ∧  ( 𝑥  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  𝑦 ) )  →  ( 𝑥  =  { ( 0g ‘ 𝐺 ) }  ∨  𝑥  =  𝐵 ) ) | 
						
							| 34 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  𝑦  ∥  ( ♯ ‘ 𝐵 ) )  ∧  ( 𝑥  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  𝑦 ) )  ∧  𝑥  =  { ( 0g ‘ 𝐺 ) } )  →  𝑥  =  { ( 0g ‘ 𝐺 ) } ) | 
						
							| 35 | 34 | fveq2d | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  𝑦  ∥  ( ♯ ‘ 𝐵 ) )  ∧  ( 𝑥  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  𝑦 ) )  ∧  𝑥  =  { ( 0g ‘ 𝐺 ) } )  →  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ { ( 0g ‘ 𝐺 ) } ) ) | 
						
							| 36 |  | simplrr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  𝑦  ∥  ( ♯ ‘ 𝐵 ) )  ∧  ( 𝑥  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  𝑦 ) )  ∧  𝑥  =  { ( 0g ‘ 𝐺 ) } )  →  ( ♯ ‘ 𝑥 )  =  𝑦 ) | 
						
							| 37 | 6 | fvexi | ⊢ ( 0g ‘ 𝐺 )  ∈  V | 
						
							| 38 |  | hashsng | ⊢ ( ( 0g ‘ 𝐺 )  ∈  V  →  ( ♯ ‘ { ( 0g ‘ 𝐺 ) } )  =  1 ) | 
						
							| 39 | 37 38 | mp1i | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  𝑦  ∥  ( ♯ ‘ 𝐵 ) )  ∧  ( 𝑥  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  𝑦 ) )  ∧  𝑥  =  { ( 0g ‘ 𝐺 ) } )  →  ( ♯ ‘ { ( 0g ‘ 𝐺 ) } )  =  1 ) | 
						
							| 40 | 35 36 39 | 3eqtr3d | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  𝑦  ∥  ( ♯ ‘ 𝐵 ) )  ∧  ( 𝑥  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  𝑦 ) )  ∧  𝑥  =  { ( 0g ‘ 𝐺 ) } )  →  𝑦  =  1 ) | 
						
							| 41 | 40 | ex | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  𝑦  ∥  ( ♯ ‘ 𝐵 ) )  ∧  ( 𝑥  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  𝑦 ) )  →  ( 𝑥  =  { ( 0g ‘ 𝐺 ) }  →  𝑦  =  1 ) ) | 
						
							| 42 |  | simplrr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  𝑦  ∥  ( ♯ ‘ 𝐵 ) )  ∧  ( 𝑥  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  𝑦 ) )  ∧  𝑥  =  𝐵 )  →  ( ♯ ‘ 𝑥 )  =  𝑦 ) | 
						
							| 43 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  𝑦  ∥  ( ♯ ‘ 𝐵 ) )  ∧  ( 𝑥  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  𝑦 ) )  ∧  𝑥  =  𝐵 )  →  𝑥  =  𝐵 ) | 
						
							| 44 | 43 | fveq2d | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  𝑦  ∥  ( ♯ ‘ 𝐵 ) )  ∧  ( 𝑥  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  𝑦 ) )  ∧  𝑥  =  𝐵 )  →  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝐵 ) ) | 
						
							| 45 | 42 44 | eqtr3d | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  𝑦  ∥  ( ♯ ‘ 𝐵 ) )  ∧  ( 𝑥  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  𝑦 ) )  ∧  𝑥  =  𝐵 )  →  𝑦  =  ( ♯ ‘ 𝐵 ) ) | 
						
							| 46 | 45 | ex | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  𝑦  ∥  ( ♯ ‘ 𝐵 ) )  ∧  ( 𝑥  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  𝑦 ) )  →  ( 𝑥  =  𝐵  →  𝑦  =  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 47 | 41 46 | orim12d | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  𝑦  ∥  ( ♯ ‘ 𝐵 ) )  ∧  ( 𝑥  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  𝑦 ) )  →  ( ( 𝑥  =  { ( 0g ‘ 𝐺 ) }  ∨  𝑥  =  𝐵 )  →  ( 𝑦  =  1  ∨  𝑦  =  ( ♯ ‘ 𝐵 ) ) ) ) | 
						
							| 48 | 33 47 | mpd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  𝑦  ∥  ( ♯ ‘ 𝐵 ) )  ∧  ( 𝑥  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  𝑦 ) )  →  ( 𝑦  =  1  ∨  𝑦  =  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 49 | 26 48 | rexlimddv | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℕ  ∧  𝑦  ∥  ( ♯ ‘ 𝐵 ) )  →  ( 𝑦  =  1  ∨  𝑦  =  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 50 | 49 | 3exp | ⊢ ( 𝜑  →  ( 𝑦  ∈  ℕ  →  ( 𝑦  ∥  ( ♯ ‘ 𝐵 )  →  ( 𝑦  =  1  ∨  𝑦  =  ( ♯ ‘ 𝐵 ) ) ) ) ) | 
						
							| 51 | 50 | ralrimiv | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  ℕ ( 𝑦  ∥  ( ♯ ‘ 𝐵 )  →  ( 𝑦  =  1  ∨  𝑦  =  ( ♯ ‘ 𝐵 ) ) ) ) | 
						
							| 52 |  | isprm2 | ⊢ ( ( ♯ ‘ 𝐵 )  ∈  ℙ  ↔  ( ( ♯ ‘ 𝐵 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ∀ 𝑦  ∈  ℕ ( 𝑦  ∥  ( ♯ ‘ 𝐵 )  →  ( 𝑦  =  1  ∨  𝑦  =  ( ♯ ‘ 𝐵 ) ) ) ) ) | 
						
							| 53 | 20 51 52 | sylanbrc | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐵 )  ∈  ℙ ) |