Description: An abelian group is simple if and only if its order is prime. (Contributed by Rohan Ridenour, 3-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ablsimpgd.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
ablsimpgd.2 | ⊢ ( 𝜑 → 𝐺 ∈ Abel ) | ||
Assertion | ablsimpgd | ⊢ ( 𝜑 → ( 𝐺 ∈ SimpGrp ↔ ( ♯ ‘ 𝐵 ) ∈ ℙ ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ablsimpgd.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
2 | ablsimpgd.2 | ⊢ ( 𝜑 → 𝐺 ∈ Abel ) | |
3 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝐺 ∈ SimpGrp ) → 𝐺 ∈ Abel ) |
4 | simpr | ⊢ ( ( 𝜑 ∧ 𝐺 ∈ SimpGrp ) → 𝐺 ∈ SimpGrp ) | |
5 | 1 3 4 | ablsimpgprmd | ⊢ ( ( 𝜑 ∧ 𝐺 ∈ SimpGrp ) → ( ♯ ‘ 𝐵 ) ∈ ℙ ) |
6 | 2 | ablgrpd | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
7 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝐵 ) ∈ ℙ ) → 𝐺 ∈ Grp ) |
8 | simpr | ⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝐵 ) ∈ ℙ ) → ( ♯ ‘ 𝐵 ) ∈ ℙ ) | |
9 | 1 7 8 | prmgrpsimpgd | ⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝐵 ) ∈ ℙ ) → 𝐺 ∈ SimpGrp ) |
10 | 5 9 | impbida | ⊢ ( 𝜑 → ( 𝐺 ∈ SimpGrp ↔ ( ♯ ‘ 𝐵 ) ∈ ℙ ) ) |