Metamath Proof Explorer


Theorem ablsimpgd

Description: An abelian group is simple if and only if its order is prime. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses ablsimpgd.1 𝐵 = ( Base ‘ 𝐺 )
ablsimpgd.2 ( 𝜑𝐺 ∈ Abel )
Assertion ablsimpgd ( 𝜑 → ( 𝐺 ∈ SimpGrp ↔ ( ♯ ‘ 𝐵 ) ∈ ℙ ) )

Proof

Step Hyp Ref Expression
1 ablsimpgd.1 𝐵 = ( Base ‘ 𝐺 )
2 ablsimpgd.2 ( 𝜑𝐺 ∈ Abel )
3 2 adantr ( ( 𝜑𝐺 ∈ SimpGrp ) → 𝐺 ∈ Abel )
4 simpr ( ( 𝜑𝐺 ∈ SimpGrp ) → 𝐺 ∈ SimpGrp )
5 1 3 4 ablsimpgprmd ( ( 𝜑𝐺 ∈ SimpGrp ) → ( ♯ ‘ 𝐵 ) ∈ ℙ )
6 2 ablgrpd ( 𝜑𝐺 ∈ Grp )
7 6 adantr ( ( 𝜑 ∧ ( ♯ ‘ 𝐵 ) ∈ ℙ ) → 𝐺 ∈ Grp )
8 simpr ( ( 𝜑 ∧ ( ♯ ‘ 𝐵 ) ∈ ℙ ) → ( ♯ ‘ 𝐵 ) ∈ ℙ )
9 1 7 8 prmgrpsimpgd ( ( 𝜑 ∧ ( ♯ ‘ 𝐵 ) ∈ ℙ ) → 𝐺 ∈ SimpGrp )
10 5 9 impbida ( 𝜑 → ( 𝐺 ∈ SimpGrp ↔ ( ♯ ‘ 𝐵 ) ∈ ℙ ) )