Metamath Proof Explorer


Theorem ablsimpgd

Description: An abelian group is simple if and only if its order is prime. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses ablsimpgd.1
|- B = ( Base ` G )
ablsimpgd.2
|- ( ph -> G e. Abel )
Assertion ablsimpgd
|- ( ph -> ( G e. SimpGrp <-> ( # ` B ) e. Prime ) )

Proof

Step Hyp Ref Expression
1 ablsimpgd.1
 |-  B = ( Base ` G )
2 ablsimpgd.2
 |-  ( ph -> G e. Abel )
3 2 adantr
 |-  ( ( ph /\ G e. SimpGrp ) -> G e. Abel )
4 simpr
 |-  ( ( ph /\ G e. SimpGrp ) -> G e. SimpGrp )
5 1 3 4 ablsimpgprmd
 |-  ( ( ph /\ G e. SimpGrp ) -> ( # ` B ) e. Prime )
6 2 ablgrpd
 |-  ( ph -> G e. Grp )
7 6 adantr
 |-  ( ( ph /\ ( # ` B ) e. Prime ) -> G e. Grp )
8 simpr
 |-  ( ( ph /\ ( # ` B ) e. Prime ) -> ( # ` B ) e. Prime )
9 1 7 8 prmgrpsimpgd
 |-  ( ( ph /\ ( # ` B ) e. Prime ) -> G e. SimpGrp )
10 5 9 impbida
 |-  ( ph -> ( G e. SimpGrp <-> ( # ` B ) e. Prime ) )