| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ablsimpgd.1 |  |-  B = ( Base ` G ) | 
						
							| 2 |  | ablsimpgd.2 |  |-  ( ph -> G e. Abel ) | 
						
							| 3 | 2 | adantr |  |-  ( ( ph /\ G e. SimpGrp ) -> G e. Abel ) | 
						
							| 4 |  | simpr |  |-  ( ( ph /\ G e. SimpGrp ) -> G e. SimpGrp ) | 
						
							| 5 | 1 3 4 | ablsimpgprmd |  |-  ( ( ph /\ G e. SimpGrp ) -> ( # ` B ) e. Prime ) | 
						
							| 6 | 2 | ablgrpd |  |-  ( ph -> G e. Grp ) | 
						
							| 7 | 6 | adantr |  |-  ( ( ph /\ ( # ` B ) e. Prime ) -> G e. Grp ) | 
						
							| 8 |  | simpr |  |-  ( ( ph /\ ( # ` B ) e. Prime ) -> ( # ` B ) e. Prime ) | 
						
							| 9 | 1 7 8 | prmgrpsimpgd |  |-  ( ( ph /\ ( # ` B ) e. Prime ) -> G e. SimpGrp ) | 
						
							| 10 | 5 9 | impbida |  |-  ( ph -> ( G e. SimpGrp <-> ( # ` B ) e. Prime ) ) |