| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ablsimpgd.1 |
|- B = ( Base ` G ) |
| 2 |
|
ablsimpgd.2 |
|- ( ph -> G e. Abel ) |
| 3 |
2
|
adantr |
|- ( ( ph /\ G e. SimpGrp ) -> G e. Abel ) |
| 4 |
|
simpr |
|- ( ( ph /\ G e. SimpGrp ) -> G e. SimpGrp ) |
| 5 |
1 3 4
|
ablsimpgprmd |
|- ( ( ph /\ G e. SimpGrp ) -> ( # ` B ) e. Prime ) |
| 6 |
2
|
ablgrpd |
|- ( ph -> G e. Grp ) |
| 7 |
6
|
adantr |
|- ( ( ph /\ ( # ` B ) e. Prime ) -> G e. Grp ) |
| 8 |
|
simpr |
|- ( ( ph /\ ( # ` B ) e. Prime ) -> ( # ` B ) e. Prime ) |
| 9 |
1 7 8
|
prmgrpsimpgd |
|- ( ( ph /\ ( # ` B ) e. Prime ) -> G e. SimpGrp ) |
| 10 |
5 9
|
impbida |
|- ( ph -> ( G e. SimpGrp <-> ( # ` B ) e. Prime ) ) |