| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ablsimpgprmd.1 |  |-  B = ( Base ` G ) | 
						
							| 2 |  | ablsimpgprmd.2 |  |-  ( ph -> G e. Abel ) | 
						
							| 3 |  | ablsimpgprmd.3 |  |-  ( ph -> G e. SimpGrp ) | 
						
							| 4 |  | simpr |  |-  ( ( ph /\ ( # ` B ) = 1 ) -> ( # ` B ) = 1 ) | 
						
							| 5 | 3 | simpggrpd |  |-  ( ph -> G e. Grp ) | 
						
							| 6 |  | eqid |  |-  ( 0g ` G ) = ( 0g ` G ) | 
						
							| 7 | 1 6 | grpidcl |  |-  ( G e. Grp -> ( 0g ` G ) e. B ) | 
						
							| 8 | 5 7 | syl |  |-  ( ph -> ( 0g ` G ) e. B ) | 
						
							| 9 | 8 | adantr |  |-  ( ( ph /\ ( # ` B ) = 1 ) -> ( 0g ` G ) e. B ) | 
						
							| 10 | 1 2 3 | ablsimpgfind |  |-  ( ph -> B e. Fin ) | 
						
							| 11 | 10 | adantr |  |-  ( ( ph /\ ( # ` B ) = 1 ) -> B e. Fin ) | 
						
							| 12 | 4 9 11 | hash1elsn |  |-  ( ( ph /\ ( # ` B ) = 1 ) -> B = { ( 0g ` G ) } ) | 
						
							| 13 | 3 | adantr |  |-  ( ( ph /\ ( # ` B ) = 1 ) -> G e. SimpGrp ) | 
						
							| 14 | 1 6 13 | simpgntrivd |  |-  ( ( ph /\ ( # ` B ) = 1 ) -> -. B = { ( 0g ` G ) } ) | 
						
							| 15 | 12 14 | pm2.65da |  |-  ( ph -> -. ( # ` B ) = 1 ) | 
						
							| 16 | 1 5 10 | hashfingrpnn |  |-  ( ph -> ( # ` B ) e. NN ) | 
						
							| 17 |  | elnn1uz2 |  |-  ( ( # ` B ) e. NN <-> ( ( # ` B ) = 1 \/ ( # ` B ) e. ( ZZ>= ` 2 ) ) ) | 
						
							| 18 | 16 17 | sylib |  |-  ( ph -> ( ( # ` B ) = 1 \/ ( # ` B ) e. ( ZZ>= ` 2 ) ) ) | 
						
							| 19 | 18 | ord |  |-  ( ph -> ( -. ( # ` B ) = 1 -> ( # ` B ) e. ( ZZ>= ` 2 ) ) ) | 
						
							| 20 | 15 19 | mpd |  |-  ( ph -> ( # ` B ) e. ( ZZ>= ` 2 ) ) | 
						
							| 21 | 2 3 | ablsimpgcygd |  |-  ( ph -> G e. CycGrp ) | 
						
							| 22 | 21 | 3ad2ant1 |  |-  ( ( ph /\ y e. NN /\ y || ( # ` B ) ) -> G e. CycGrp ) | 
						
							| 23 |  | simp3 |  |-  ( ( ph /\ y e. NN /\ y || ( # ` B ) ) -> y || ( # ` B ) ) | 
						
							| 24 | 10 | 3ad2ant1 |  |-  ( ( ph /\ y e. NN /\ y || ( # ` B ) ) -> B e. Fin ) | 
						
							| 25 |  | simp2 |  |-  ( ( ph /\ y e. NN /\ y || ( # ` B ) ) -> y e. NN ) | 
						
							| 26 | 1 22 23 24 25 | fincygsubgodexd |  |-  ( ( ph /\ y e. NN /\ y || ( # ` B ) ) -> E. x e. ( SubGrp ` G ) ( # ` x ) = y ) | 
						
							| 27 |  | simpl1 |  |-  ( ( ( ph /\ y e. NN /\ y || ( # ` B ) ) /\ ( x e. ( SubGrp ` G ) /\ ( # ` x ) = y ) ) -> ph ) | 
						
							| 28 | 27 3 | syl |  |-  ( ( ( ph /\ y e. NN /\ y || ( # ` B ) ) /\ ( x e. ( SubGrp ` G ) /\ ( # ` x ) = y ) ) -> G e. SimpGrp ) | 
						
							| 29 |  | simprl |  |-  ( ( ( ph /\ y e. NN /\ y || ( # ` B ) ) /\ ( x e. ( SubGrp ` G ) /\ ( # ` x ) = y ) ) -> x e. ( SubGrp ` G ) ) | 
						
							| 30 |  | ablnsg |  |-  ( G e. Abel -> ( NrmSGrp ` G ) = ( SubGrp ` G ) ) | 
						
							| 31 | 27 2 30 | 3syl |  |-  ( ( ( ph /\ y e. NN /\ y || ( # ` B ) ) /\ ( x e. ( SubGrp ` G ) /\ ( # ` x ) = y ) ) -> ( NrmSGrp ` G ) = ( SubGrp ` G ) ) | 
						
							| 32 | 29 31 | eleqtrrd |  |-  ( ( ( ph /\ y e. NN /\ y || ( # ` B ) ) /\ ( x e. ( SubGrp ` G ) /\ ( # ` x ) = y ) ) -> x e. ( NrmSGrp ` G ) ) | 
						
							| 33 | 1 6 28 32 | simpgnsgeqd |  |-  ( ( ( ph /\ y e. NN /\ y || ( # ` B ) ) /\ ( x e. ( SubGrp ` G ) /\ ( # ` x ) = y ) ) -> ( x = { ( 0g ` G ) } \/ x = B ) ) | 
						
							| 34 |  | simpr |  |-  ( ( ( ( ph /\ y e. NN /\ y || ( # ` B ) ) /\ ( x e. ( SubGrp ` G ) /\ ( # ` x ) = y ) ) /\ x = { ( 0g ` G ) } ) -> x = { ( 0g ` G ) } ) | 
						
							| 35 | 34 | fveq2d |  |-  ( ( ( ( ph /\ y e. NN /\ y || ( # ` B ) ) /\ ( x e. ( SubGrp ` G ) /\ ( # ` x ) = y ) ) /\ x = { ( 0g ` G ) } ) -> ( # ` x ) = ( # ` { ( 0g ` G ) } ) ) | 
						
							| 36 |  | simplrr |  |-  ( ( ( ( ph /\ y e. NN /\ y || ( # ` B ) ) /\ ( x e. ( SubGrp ` G ) /\ ( # ` x ) = y ) ) /\ x = { ( 0g ` G ) } ) -> ( # ` x ) = y ) | 
						
							| 37 | 6 | fvexi |  |-  ( 0g ` G ) e. _V | 
						
							| 38 |  | hashsng |  |-  ( ( 0g ` G ) e. _V -> ( # ` { ( 0g ` G ) } ) = 1 ) | 
						
							| 39 | 37 38 | mp1i |  |-  ( ( ( ( ph /\ y e. NN /\ y || ( # ` B ) ) /\ ( x e. ( SubGrp ` G ) /\ ( # ` x ) = y ) ) /\ x = { ( 0g ` G ) } ) -> ( # ` { ( 0g ` G ) } ) = 1 ) | 
						
							| 40 | 35 36 39 | 3eqtr3d |  |-  ( ( ( ( ph /\ y e. NN /\ y || ( # ` B ) ) /\ ( x e. ( SubGrp ` G ) /\ ( # ` x ) = y ) ) /\ x = { ( 0g ` G ) } ) -> y = 1 ) | 
						
							| 41 | 40 | ex |  |-  ( ( ( ph /\ y e. NN /\ y || ( # ` B ) ) /\ ( x e. ( SubGrp ` G ) /\ ( # ` x ) = y ) ) -> ( x = { ( 0g ` G ) } -> y = 1 ) ) | 
						
							| 42 |  | simplrr |  |-  ( ( ( ( ph /\ y e. NN /\ y || ( # ` B ) ) /\ ( x e. ( SubGrp ` G ) /\ ( # ` x ) = y ) ) /\ x = B ) -> ( # ` x ) = y ) | 
						
							| 43 |  | simpr |  |-  ( ( ( ( ph /\ y e. NN /\ y || ( # ` B ) ) /\ ( x e. ( SubGrp ` G ) /\ ( # ` x ) = y ) ) /\ x = B ) -> x = B ) | 
						
							| 44 | 43 | fveq2d |  |-  ( ( ( ( ph /\ y e. NN /\ y || ( # ` B ) ) /\ ( x e. ( SubGrp ` G ) /\ ( # ` x ) = y ) ) /\ x = B ) -> ( # ` x ) = ( # ` B ) ) | 
						
							| 45 | 42 44 | eqtr3d |  |-  ( ( ( ( ph /\ y e. NN /\ y || ( # ` B ) ) /\ ( x e. ( SubGrp ` G ) /\ ( # ` x ) = y ) ) /\ x = B ) -> y = ( # ` B ) ) | 
						
							| 46 | 45 | ex |  |-  ( ( ( ph /\ y e. NN /\ y || ( # ` B ) ) /\ ( x e. ( SubGrp ` G ) /\ ( # ` x ) = y ) ) -> ( x = B -> y = ( # ` B ) ) ) | 
						
							| 47 | 41 46 | orim12d |  |-  ( ( ( ph /\ y e. NN /\ y || ( # ` B ) ) /\ ( x e. ( SubGrp ` G ) /\ ( # ` x ) = y ) ) -> ( ( x = { ( 0g ` G ) } \/ x = B ) -> ( y = 1 \/ y = ( # ` B ) ) ) ) | 
						
							| 48 | 33 47 | mpd |  |-  ( ( ( ph /\ y e. NN /\ y || ( # ` B ) ) /\ ( x e. ( SubGrp ` G ) /\ ( # ` x ) = y ) ) -> ( y = 1 \/ y = ( # ` B ) ) ) | 
						
							| 49 | 26 48 | rexlimddv |  |-  ( ( ph /\ y e. NN /\ y || ( # ` B ) ) -> ( y = 1 \/ y = ( # ` B ) ) ) | 
						
							| 50 | 49 | 3exp |  |-  ( ph -> ( y e. NN -> ( y || ( # ` B ) -> ( y = 1 \/ y = ( # ` B ) ) ) ) ) | 
						
							| 51 | 50 | ralrimiv |  |-  ( ph -> A. y e. NN ( y || ( # ` B ) -> ( y = 1 \/ y = ( # ` B ) ) ) ) | 
						
							| 52 |  | isprm2 |  |-  ( ( # ` B ) e. Prime <-> ( ( # ` B ) e. ( ZZ>= ` 2 ) /\ A. y e. NN ( y || ( # ` B ) -> ( y = 1 \/ y = ( # ` B ) ) ) ) ) | 
						
							| 53 | 20 51 52 | sylanbrc |  |-  ( ph -> ( # ` B ) e. Prime ) |