Step |
Hyp |
Ref |
Expression |
1 |
|
ablsimpgprmd.1 |
|- B = ( Base ` G ) |
2 |
|
ablsimpgprmd.2 |
|- ( ph -> G e. Abel ) |
3 |
|
ablsimpgprmd.3 |
|- ( ph -> G e. SimpGrp ) |
4 |
|
simpr |
|- ( ( ph /\ ( # ` B ) = 1 ) -> ( # ` B ) = 1 ) |
5 |
3
|
simpggrpd |
|- ( ph -> G e. Grp ) |
6 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
7 |
1 6
|
grpidcl |
|- ( G e. Grp -> ( 0g ` G ) e. B ) |
8 |
5 7
|
syl |
|- ( ph -> ( 0g ` G ) e. B ) |
9 |
8
|
adantr |
|- ( ( ph /\ ( # ` B ) = 1 ) -> ( 0g ` G ) e. B ) |
10 |
1 2 3
|
ablsimpgfind |
|- ( ph -> B e. Fin ) |
11 |
10
|
adantr |
|- ( ( ph /\ ( # ` B ) = 1 ) -> B e. Fin ) |
12 |
4 9 11
|
hash1elsn |
|- ( ( ph /\ ( # ` B ) = 1 ) -> B = { ( 0g ` G ) } ) |
13 |
3
|
adantr |
|- ( ( ph /\ ( # ` B ) = 1 ) -> G e. SimpGrp ) |
14 |
1 6 13
|
simpgntrivd |
|- ( ( ph /\ ( # ` B ) = 1 ) -> -. B = { ( 0g ` G ) } ) |
15 |
12 14
|
pm2.65da |
|- ( ph -> -. ( # ` B ) = 1 ) |
16 |
1 5 10
|
hashfingrpnn |
|- ( ph -> ( # ` B ) e. NN ) |
17 |
|
elnn1uz2 |
|- ( ( # ` B ) e. NN <-> ( ( # ` B ) = 1 \/ ( # ` B ) e. ( ZZ>= ` 2 ) ) ) |
18 |
16 17
|
sylib |
|- ( ph -> ( ( # ` B ) = 1 \/ ( # ` B ) e. ( ZZ>= ` 2 ) ) ) |
19 |
18
|
ord |
|- ( ph -> ( -. ( # ` B ) = 1 -> ( # ` B ) e. ( ZZ>= ` 2 ) ) ) |
20 |
15 19
|
mpd |
|- ( ph -> ( # ` B ) e. ( ZZ>= ` 2 ) ) |
21 |
2 3
|
ablsimpgcygd |
|- ( ph -> G e. CycGrp ) |
22 |
21
|
3ad2ant1 |
|- ( ( ph /\ y e. NN /\ y || ( # ` B ) ) -> G e. CycGrp ) |
23 |
|
simp3 |
|- ( ( ph /\ y e. NN /\ y || ( # ` B ) ) -> y || ( # ` B ) ) |
24 |
10
|
3ad2ant1 |
|- ( ( ph /\ y e. NN /\ y || ( # ` B ) ) -> B e. Fin ) |
25 |
|
simp2 |
|- ( ( ph /\ y e. NN /\ y || ( # ` B ) ) -> y e. NN ) |
26 |
1 22 23 24 25
|
fincygsubgodexd |
|- ( ( ph /\ y e. NN /\ y || ( # ` B ) ) -> E. x e. ( SubGrp ` G ) ( # ` x ) = y ) |
27 |
|
simpl1 |
|- ( ( ( ph /\ y e. NN /\ y || ( # ` B ) ) /\ ( x e. ( SubGrp ` G ) /\ ( # ` x ) = y ) ) -> ph ) |
28 |
27 3
|
syl |
|- ( ( ( ph /\ y e. NN /\ y || ( # ` B ) ) /\ ( x e. ( SubGrp ` G ) /\ ( # ` x ) = y ) ) -> G e. SimpGrp ) |
29 |
|
simprl |
|- ( ( ( ph /\ y e. NN /\ y || ( # ` B ) ) /\ ( x e. ( SubGrp ` G ) /\ ( # ` x ) = y ) ) -> x e. ( SubGrp ` G ) ) |
30 |
|
ablnsg |
|- ( G e. Abel -> ( NrmSGrp ` G ) = ( SubGrp ` G ) ) |
31 |
27 2 30
|
3syl |
|- ( ( ( ph /\ y e. NN /\ y || ( # ` B ) ) /\ ( x e. ( SubGrp ` G ) /\ ( # ` x ) = y ) ) -> ( NrmSGrp ` G ) = ( SubGrp ` G ) ) |
32 |
29 31
|
eleqtrrd |
|- ( ( ( ph /\ y e. NN /\ y || ( # ` B ) ) /\ ( x e. ( SubGrp ` G ) /\ ( # ` x ) = y ) ) -> x e. ( NrmSGrp ` G ) ) |
33 |
1 6 28 32
|
simpgnsgeqd |
|- ( ( ( ph /\ y e. NN /\ y || ( # ` B ) ) /\ ( x e. ( SubGrp ` G ) /\ ( # ` x ) = y ) ) -> ( x = { ( 0g ` G ) } \/ x = B ) ) |
34 |
|
simpr |
|- ( ( ( ( ph /\ y e. NN /\ y || ( # ` B ) ) /\ ( x e. ( SubGrp ` G ) /\ ( # ` x ) = y ) ) /\ x = { ( 0g ` G ) } ) -> x = { ( 0g ` G ) } ) |
35 |
34
|
fveq2d |
|- ( ( ( ( ph /\ y e. NN /\ y || ( # ` B ) ) /\ ( x e. ( SubGrp ` G ) /\ ( # ` x ) = y ) ) /\ x = { ( 0g ` G ) } ) -> ( # ` x ) = ( # ` { ( 0g ` G ) } ) ) |
36 |
|
simplrr |
|- ( ( ( ( ph /\ y e. NN /\ y || ( # ` B ) ) /\ ( x e. ( SubGrp ` G ) /\ ( # ` x ) = y ) ) /\ x = { ( 0g ` G ) } ) -> ( # ` x ) = y ) |
37 |
6
|
fvexi |
|- ( 0g ` G ) e. _V |
38 |
|
hashsng |
|- ( ( 0g ` G ) e. _V -> ( # ` { ( 0g ` G ) } ) = 1 ) |
39 |
37 38
|
mp1i |
|- ( ( ( ( ph /\ y e. NN /\ y || ( # ` B ) ) /\ ( x e. ( SubGrp ` G ) /\ ( # ` x ) = y ) ) /\ x = { ( 0g ` G ) } ) -> ( # ` { ( 0g ` G ) } ) = 1 ) |
40 |
35 36 39
|
3eqtr3d |
|- ( ( ( ( ph /\ y e. NN /\ y || ( # ` B ) ) /\ ( x e. ( SubGrp ` G ) /\ ( # ` x ) = y ) ) /\ x = { ( 0g ` G ) } ) -> y = 1 ) |
41 |
40
|
ex |
|- ( ( ( ph /\ y e. NN /\ y || ( # ` B ) ) /\ ( x e. ( SubGrp ` G ) /\ ( # ` x ) = y ) ) -> ( x = { ( 0g ` G ) } -> y = 1 ) ) |
42 |
|
simplrr |
|- ( ( ( ( ph /\ y e. NN /\ y || ( # ` B ) ) /\ ( x e. ( SubGrp ` G ) /\ ( # ` x ) = y ) ) /\ x = B ) -> ( # ` x ) = y ) |
43 |
|
simpr |
|- ( ( ( ( ph /\ y e. NN /\ y || ( # ` B ) ) /\ ( x e. ( SubGrp ` G ) /\ ( # ` x ) = y ) ) /\ x = B ) -> x = B ) |
44 |
43
|
fveq2d |
|- ( ( ( ( ph /\ y e. NN /\ y || ( # ` B ) ) /\ ( x e. ( SubGrp ` G ) /\ ( # ` x ) = y ) ) /\ x = B ) -> ( # ` x ) = ( # ` B ) ) |
45 |
42 44
|
eqtr3d |
|- ( ( ( ( ph /\ y e. NN /\ y || ( # ` B ) ) /\ ( x e. ( SubGrp ` G ) /\ ( # ` x ) = y ) ) /\ x = B ) -> y = ( # ` B ) ) |
46 |
45
|
ex |
|- ( ( ( ph /\ y e. NN /\ y || ( # ` B ) ) /\ ( x e. ( SubGrp ` G ) /\ ( # ` x ) = y ) ) -> ( x = B -> y = ( # ` B ) ) ) |
47 |
41 46
|
orim12d |
|- ( ( ( ph /\ y e. NN /\ y || ( # ` B ) ) /\ ( x e. ( SubGrp ` G ) /\ ( # ` x ) = y ) ) -> ( ( x = { ( 0g ` G ) } \/ x = B ) -> ( y = 1 \/ y = ( # ` B ) ) ) ) |
48 |
33 47
|
mpd |
|- ( ( ( ph /\ y e. NN /\ y || ( # ` B ) ) /\ ( x e. ( SubGrp ` G ) /\ ( # ` x ) = y ) ) -> ( y = 1 \/ y = ( # ` B ) ) ) |
49 |
26 48
|
rexlimddv |
|- ( ( ph /\ y e. NN /\ y || ( # ` B ) ) -> ( y = 1 \/ y = ( # ` B ) ) ) |
50 |
49
|
3exp |
|- ( ph -> ( y e. NN -> ( y || ( # ` B ) -> ( y = 1 \/ y = ( # ` B ) ) ) ) ) |
51 |
50
|
ralrimiv |
|- ( ph -> A. y e. NN ( y || ( # ` B ) -> ( y = 1 \/ y = ( # ` B ) ) ) ) |
52 |
|
isprm2 |
|- ( ( # ` B ) e. Prime <-> ( ( # ` B ) e. ( ZZ>= ` 2 ) /\ A. y e. NN ( y || ( # ` B ) -> ( y = 1 \/ y = ( # ` B ) ) ) ) ) |
53 |
20 51 52
|
sylanbrc |
|- ( ph -> ( # ` B ) e. Prime ) |