| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fincygsubgodexd.1 | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | fincygsubgodexd.2 | ⊢ ( 𝜑  →  𝐺  ∈  CycGrp ) | 
						
							| 3 |  | fincygsubgodexd.3 | ⊢ ( 𝜑  →  𝐶  ∥  ( ♯ ‘ 𝐵 ) ) | 
						
							| 4 |  | fincygsubgodexd.4 | ⊢ ( 𝜑  →  𝐵  ∈  Fin ) | 
						
							| 5 |  | fincygsubgodexd.5 | ⊢ ( 𝜑  →  𝐶  ∈  ℕ ) | 
						
							| 6 |  | eqid | ⊢ ( .g ‘ 𝐺 )  =  ( .g ‘ 𝐺 ) | 
						
							| 7 | 1 6 | iscyg | ⊢ ( 𝐺  ∈  CycGrp  ↔  ( 𝐺  ∈  Grp  ∧  ∃ 𝑦  ∈  𝐵 ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑦 ) )  =  𝐵 ) ) | 
						
							| 8 | 7 | simprbi | ⊢ ( 𝐺  ∈  CycGrp  →  ∃ 𝑦  ∈  𝐵 ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑦 ) )  =  𝐵 ) | 
						
							| 9 | 2 8 | syl | ⊢ ( 𝜑  →  ∃ 𝑦  ∈  𝐵 ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑦 ) )  =  𝐵 ) | 
						
							| 10 |  | eqid | ⊢ ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) ( ( ( ♯ ‘ 𝐵 )  /  𝐶 ) ( .g ‘ 𝐺 ) 𝑦 ) ) )  =  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) ( ( ( ♯ ‘ 𝐵 )  /  𝐶 ) ( .g ‘ 𝐺 ) 𝑦 ) ) ) | 
						
							| 11 |  | cyggrp | ⊢ ( 𝐺  ∈  CycGrp  →  𝐺  ∈  Grp ) | 
						
							| 12 | 2 11 | syl | ⊢ ( 𝜑  →  𝐺  ∈  Grp ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑦 ) )  =  𝐵 ) )  →  𝐺  ∈  Grp ) | 
						
							| 14 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑦 ) )  =  𝐵 ) )  →  𝑦  ∈  𝐵 ) | 
						
							| 15 | 1 12 4 | hashfingrpnn | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐵 )  ∈  ℕ ) | 
						
							| 16 |  | nndivdvds | ⊢ ( ( ( ♯ ‘ 𝐵 )  ∈  ℕ  ∧  𝐶  ∈  ℕ )  →  ( 𝐶  ∥  ( ♯ ‘ 𝐵 )  ↔  ( ( ♯ ‘ 𝐵 )  /  𝐶 )  ∈  ℕ ) ) | 
						
							| 17 | 15 5 16 | syl2anc | ⊢ ( 𝜑  →  ( 𝐶  ∥  ( ♯ ‘ 𝐵 )  ↔  ( ( ♯ ‘ 𝐵 )  /  𝐶 )  ∈  ℕ ) ) | 
						
							| 18 | 3 17 | mpbid | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝐵 )  /  𝐶 )  ∈  ℕ ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑦 ) )  =  𝐵 ) )  →  ( ( ♯ ‘ 𝐵 )  /  𝐶 )  ∈  ℕ ) | 
						
							| 20 | 1 6 10 13 14 19 | fincygsubgd | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑦 ) )  =  𝐵 ) )  →  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) ( ( ( ♯ ‘ 𝐵 )  /  𝐶 ) ( .g ‘ 𝐺 ) 𝑦 ) ) )  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 21 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑦 ) )  =  𝐵 ) )  ∧  𝑥  =  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) ( ( ( ♯ ‘ 𝐵 )  /  𝐶 ) ( .g ‘ 𝐺 ) 𝑦 ) ) ) )  →  𝑥  =  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) ( ( ( ♯ ‘ 𝐵 )  /  𝐶 ) ( .g ‘ 𝐺 ) 𝑦 ) ) ) ) | 
						
							| 22 | 21 | fveq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑦 ) )  =  𝐵 ) )  ∧  𝑥  =  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) ( ( ( ♯ ‘ 𝐵 )  /  𝐶 ) ( .g ‘ 𝐺 ) 𝑦 ) ) ) )  →  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) ( ( ( ♯ ‘ 𝐵 )  /  𝐶 ) ( .g ‘ 𝐺 ) 𝑦 ) ) ) ) ) | 
						
							| 23 |  | eqid | ⊢ ( ( ♯ ‘ 𝐵 )  /  ( ( ♯ ‘ 𝐵 )  /  𝐶 ) )  =  ( ( ♯ ‘ 𝐵 )  /  ( ( ♯ ‘ 𝐵 )  /  𝐶 ) ) | 
						
							| 24 |  | eqid | ⊢ ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑦 ) )  =  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑦 ) ) | 
						
							| 25 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑦 ) )  =  𝐵 ) )  →  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑦 ) )  =  𝐵 ) | 
						
							| 26 | 5 | nnne0d | ⊢ ( 𝜑  →  𝐶  ≠  0 ) | 
						
							| 27 |  | divconjdvds | ⊢ ( ( 𝐶  ∥  ( ♯ ‘ 𝐵 )  ∧  𝐶  ≠  0 )  →  ( ( ♯ ‘ 𝐵 )  /  𝐶 )  ∥  ( ♯ ‘ 𝐵 ) ) | 
						
							| 28 | 3 26 27 | syl2anc | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝐵 )  /  𝐶 )  ∥  ( ♯ ‘ 𝐵 ) ) | 
						
							| 29 | 28 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑦 ) )  =  𝐵 ) )  →  ( ( ♯ ‘ 𝐵 )  /  𝐶 )  ∥  ( ♯ ‘ 𝐵 ) ) | 
						
							| 30 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑦 ) )  =  𝐵 ) )  →  𝐵  ∈  Fin ) | 
						
							| 31 | 1 6 23 24 10 13 14 25 29 30 19 | fincygsubgodd | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑦 ) )  =  𝐵 ) )  →  ( ♯ ‘ ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) ( ( ( ♯ ‘ 𝐵 )  /  𝐶 ) ( .g ‘ 𝐺 ) 𝑦 ) ) ) )  =  ( ( ♯ ‘ 𝐵 )  /  ( ( ♯ ‘ 𝐵 )  /  𝐶 ) ) ) | 
						
							| 32 | 31 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑦 ) )  =  𝐵 ) )  ∧  𝑥  =  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) ( ( ( ♯ ‘ 𝐵 )  /  𝐶 ) ( .g ‘ 𝐺 ) 𝑦 ) ) ) )  →  ( ♯ ‘ ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) ( ( ( ♯ ‘ 𝐵 )  /  𝐶 ) ( .g ‘ 𝐺 ) 𝑦 ) ) ) )  =  ( ( ♯ ‘ 𝐵 )  /  ( ( ♯ ‘ 𝐵 )  /  𝐶 ) ) ) | 
						
							| 33 | 15 | nncnd | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 34 | 5 | nncnd | ⊢ ( 𝜑  →  𝐶  ∈  ℂ ) | 
						
							| 35 | 15 | nnne0d | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐵 )  ≠  0 ) | 
						
							| 36 | 33 34 35 26 | ddcand | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝐵 )  /  ( ( ♯ ‘ 𝐵 )  /  𝐶 ) )  =  𝐶 ) | 
						
							| 37 | 36 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑦 ) )  =  𝐵 ) )  ∧  𝑥  =  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) ( ( ( ♯ ‘ 𝐵 )  /  𝐶 ) ( .g ‘ 𝐺 ) 𝑦 ) ) ) )  →  ( ( ♯ ‘ 𝐵 )  /  ( ( ♯ ‘ 𝐵 )  /  𝐶 ) )  =  𝐶 ) | 
						
							| 38 | 22 32 37 | 3eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑦 ) )  =  𝐵 ) )  ∧  𝑥  =  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) ( ( ( ♯ ‘ 𝐵 )  /  𝐶 ) ( .g ‘ 𝐺 ) 𝑦 ) ) ) )  →  ( ♯ ‘ 𝑥 )  =  𝐶 ) | 
						
							| 39 | 20 38 | rspcedeq1vd | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑦 ) )  =  𝐵 ) )  →  ∃ 𝑥  ∈  ( SubGrp ‘ 𝐺 ) ( ♯ ‘ 𝑥 )  =  𝐶 ) | 
						
							| 40 | 9 39 | rexlimddv | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ( SubGrp ‘ 𝐺 ) ( ♯ ‘ 𝑥 )  =  𝐶 ) |