Step |
Hyp |
Ref |
Expression |
1 |
|
fincygsubgodexd.1 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
fincygsubgodexd.2 |
⊢ ( 𝜑 → 𝐺 ∈ CycGrp ) |
3 |
|
fincygsubgodexd.3 |
⊢ ( 𝜑 → 𝐶 ∥ ( ♯ ‘ 𝐵 ) ) |
4 |
|
fincygsubgodexd.4 |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
5 |
|
fincygsubgodexd.5 |
⊢ ( 𝜑 → 𝐶 ∈ ℕ ) |
6 |
|
eqid |
⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) |
7 |
1 6
|
iscyg |
⊢ ( 𝐺 ∈ CycGrp ↔ ( 𝐺 ∈ Grp ∧ ∃ 𝑦 ∈ 𝐵 ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑦 ) ) = 𝐵 ) ) |
8 |
7
|
simprbi |
⊢ ( 𝐺 ∈ CycGrp → ∃ 𝑦 ∈ 𝐵 ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑦 ) ) = 𝐵 ) |
9 |
2 8
|
syl |
⊢ ( 𝜑 → ∃ 𝑦 ∈ 𝐵 ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑦 ) ) = 𝐵 ) |
10 |
|
eqid |
⊢ ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) ( ( ( ♯ ‘ 𝐵 ) / 𝐶 ) ( .g ‘ 𝐺 ) 𝑦 ) ) ) = ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) ( ( ( ♯ ‘ 𝐵 ) / 𝐶 ) ( .g ‘ 𝐺 ) 𝑦 ) ) ) |
11 |
|
cyggrp |
⊢ ( 𝐺 ∈ CycGrp → 𝐺 ∈ Grp ) |
12 |
2 11
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
13 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑦 ) ) = 𝐵 ) ) → 𝐺 ∈ Grp ) |
14 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑦 ) ) = 𝐵 ) ) → 𝑦 ∈ 𝐵 ) |
15 |
1 12 4
|
hashfingrpnn |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℕ ) |
16 |
|
nndivdvds |
⊢ ( ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐶 ∥ ( ♯ ‘ 𝐵 ) ↔ ( ( ♯ ‘ 𝐵 ) / 𝐶 ) ∈ ℕ ) ) |
17 |
15 5 16
|
syl2anc |
⊢ ( 𝜑 → ( 𝐶 ∥ ( ♯ ‘ 𝐵 ) ↔ ( ( ♯ ‘ 𝐵 ) / 𝐶 ) ∈ ℕ ) ) |
18 |
3 17
|
mpbid |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐵 ) / 𝐶 ) ∈ ℕ ) |
19 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑦 ) ) = 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) / 𝐶 ) ∈ ℕ ) |
20 |
1 6 10 13 14 19
|
fincygsubgd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑦 ) ) = 𝐵 ) ) → ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) ( ( ( ♯ ‘ 𝐵 ) / 𝐶 ) ( .g ‘ 𝐺 ) 𝑦 ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
21 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑦 ) ) = 𝐵 ) ) ∧ 𝑥 = ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) ( ( ( ♯ ‘ 𝐵 ) / 𝐶 ) ( .g ‘ 𝐺 ) 𝑦 ) ) ) ) → 𝑥 = ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) ( ( ( ♯ ‘ 𝐵 ) / 𝐶 ) ( .g ‘ 𝐺 ) 𝑦 ) ) ) ) |
22 |
21
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑦 ) ) = 𝐵 ) ) ∧ 𝑥 = ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) ( ( ( ♯ ‘ 𝐵 ) / 𝐶 ) ( .g ‘ 𝐺 ) 𝑦 ) ) ) ) → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) ( ( ( ♯ ‘ 𝐵 ) / 𝐶 ) ( .g ‘ 𝐺 ) 𝑦 ) ) ) ) ) |
23 |
|
eqid |
⊢ ( ( ♯ ‘ 𝐵 ) / ( ( ♯ ‘ 𝐵 ) / 𝐶 ) ) = ( ( ♯ ‘ 𝐵 ) / ( ( ♯ ‘ 𝐵 ) / 𝐶 ) ) |
24 |
|
eqid |
⊢ ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑦 ) ) = ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑦 ) ) |
25 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑦 ) ) = 𝐵 ) ) → ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑦 ) ) = 𝐵 ) |
26 |
5
|
nnne0d |
⊢ ( 𝜑 → 𝐶 ≠ 0 ) |
27 |
|
divconjdvds |
⊢ ( ( 𝐶 ∥ ( ♯ ‘ 𝐵 ) ∧ 𝐶 ≠ 0 ) → ( ( ♯ ‘ 𝐵 ) / 𝐶 ) ∥ ( ♯ ‘ 𝐵 ) ) |
28 |
3 26 27
|
syl2anc |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐵 ) / 𝐶 ) ∥ ( ♯ ‘ 𝐵 ) ) |
29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑦 ) ) = 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) / 𝐶 ) ∥ ( ♯ ‘ 𝐵 ) ) |
30 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑦 ) ) = 𝐵 ) ) → 𝐵 ∈ Fin ) |
31 |
1 6 23 24 10 13 14 25 29 30 19
|
fincygsubgodd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑦 ) ) = 𝐵 ) ) → ( ♯ ‘ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) ( ( ( ♯ ‘ 𝐵 ) / 𝐶 ) ( .g ‘ 𝐺 ) 𝑦 ) ) ) ) = ( ( ♯ ‘ 𝐵 ) / ( ( ♯ ‘ 𝐵 ) / 𝐶 ) ) ) |
32 |
31
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑦 ) ) = 𝐵 ) ) ∧ 𝑥 = ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) ( ( ( ♯ ‘ 𝐵 ) / 𝐶 ) ( .g ‘ 𝐺 ) 𝑦 ) ) ) ) → ( ♯ ‘ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) ( ( ( ♯ ‘ 𝐵 ) / 𝐶 ) ( .g ‘ 𝐺 ) 𝑦 ) ) ) ) = ( ( ♯ ‘ 𝐵 ) / ( ( ♯ ‘ 𝐵 ) / 𝐶 ) ) ) |
33 |
15
|
nncnd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℂ ) |
34 |
5
|
nncnd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
35 |
15
|
nnne0d |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ≠ 0 ) |
36 |
33 34 35 26
|
ddcand |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐵 ) / ( ( ♯ ‘ 𝐵 ) / 𝐶 ) ) = 𝐶 ) |
37 |
36
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑦 ) ) = 𝐵 ) ) ∧ 𝑥 = ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) ( ( ( ♯ ‘ 𝐵 ) / 𝐶 ) ( .g ‘ 𝐺 ) 𝑦 ) ) ) ) → ( ( ♯ ‘ 𝐵 ) / ( ( ♯ ‘ 𝐵 ) / 𝐶 ) ) = 𝐶 ) |
38 |
22 32 37
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑦 ) ) = 𝐵 ) ) ∧ 𝑥 = ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) ( ( ( ♯ ‘ 𝐵 ) / 𝐶 ) ( .g ‘ 𝐺 ) 𝑦 ) ) ) ) → ( ♯ ‘ 𝑥 ) = 𝐶 ) |
39 |
20 38
|
rspcedeq1vd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑦 ) ) = 𝐵 ) ) → ∃ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ( ♯ ‘ 𝑥 ) = 𝐶 ) |
40 |
9 39
|
rexlimddv |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ( ♯ ‘ 𝑥 ) = 𝐶 ) |