Step |
Hyp |
Ref |
Expression |
1 |
|
fincygsubgodexd.1 |
|
2 |
|
fincygsubgodexd.2 |
|
3 |
|
fincygsubgodexd.3 |
|
4 |
|
fincygsubgodexd.4 |
|
5 |
|
fincygsubgodexd.5 |
|
6 |
|
eqid |
|
7 |
1 6
|
iscyg |
|
8 |
7
|
simprbi |
|
9 |
2 8
|
syl |
|
10 |
|
eqid |
|
11 |
|
cyggrp |
|
12 |
2 11
|
syl |
|
13 |
12
|
adantr |
|
14 |
|
simprl |
|
15 |
1 12 4
|
hashfingrpnn |
|
16 |
|
nndivdvds |
|
17 |
15 5 16
|
syl2anc |
|
18 |
3 17
|
mpbid |
|
19 |
18
|
adantr |
|
20 |
1 6 10 13 14 19
|
fincygsubgd |
|
21 |
|
simpr |
|
22 |
21
|
fveq2d |
|
23 |
|
eqid |
|
24 |
|
eqid |
|
25 |
|
simprr |
|
26 |
5
|
nnne0d |
|
27 |
|
divconjdvds |
|
28 |
3 26 27
|
syl2anc |
|
29 |
28
|
adantr |
|
30 |
4
|
adantr |
|
31 |
1 6 23 24 10 13 14 25 29 30 19
|
fincygsubgodd |
|
32 |
31
|
adantr |
|
33 |
15
|
nncnd |
|
34 |
5
|
nncnd |
|
35 |
15
|
nnne0d |
|
36 |
33 34 35 26
|
ddcand |
|
37 |
36
|
ad2antrr |
|
38 |
22 32 37
|
3eqtrd |
|
39 |
20 38
|
rspcedeq1vd |
|
40 |
9 39
|
rexlimddv |
|