| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fincygsubgodexd.1 |
|
| 2 |
|
fincygsubgodexd.2 |
|
| 3 |
|
fincygsubgodexd.3 |
|
| 4 |
|
fincygsubgodexd.4 |
|
| 5 |
|
fincygsubgodexd.5 |
|
| 6 |
|
eqid |
|
| 7 |
1 6
|
iscyg |
|
| 8 |
7
|
simprbi |
|
| 9 |
2 8
|
syl |
|
| 10 |
|
eqid |
|
| 11 |
|
cyggrp |
|
| 12 |
2 11
|
syl |
|
| 13 |
12
|
adantr |
|
| 14 |
|
simprl |
|
| 15 |
1 12 4
|
hashfingrpnn |
|
| 16 |
|
nndivdvds |
|
| 17 |
15 5 16
|
syl2anc |
|
| 18 |
3 17
|
mpbid |
|
| 19 |
18
|
adantr |
|
| 20 |
1 6 10 13 14 19
|
fincygsubgd |
|
| 21 |
|
simpr |
|
| 22 |
21
|
fveq2d |
|
| 23 |
|
eqid |
|
| 24 |
|
eqid |
|
| 25 |
|
simprr |
|
| 26 |
5
|
nnne0d |
|
| 27 |
|
divconjdvds |
|
| 28 |
3 26 27
|
syl2anc |
|
| 29 |
28
|
adantr |
|
| 30 |
4
|
adantr |
|
| 31 |
1 6 23 24 10 13 14 25 29 30 19
|
fincygsubgodd |
|
| 32 |
31
|
adantr |
|
| 33 |
15
|
nncnd |
|
| 34 |
5
|
nncnd |
|
| 35 |
15
|
nnne0d |
|
| 36 |
33 34 35 26
|
ddcand |
|
| 37 |
36
|
ad2antrr |
|
| 38 |
22 32 37
|
3eqtrd |
|
| 39 |
20 38
|
rspcedeq1vd |
|
| 40 |
9 39
|
rexlimddv |
|