| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fincygsubgodexd.1 |  | 
						
							| 2 |  | fincygsubgodexd.2 |  | 
						
							| 3 |  | fincygsubgodexd.3 |  | 
						
							| 4 |  | fincygsubgodexd.4 |  | 
						
							| 5 |  | fincygsubgodexd.5 |  | 
						
							| 6 |  | eqid |  | 
						
							| 7 | 1 6 | iscyg |  | 
						
							| 8 | 7 | simprbi |  | 
						
							| 9 | 2 8 | syl |  | 
						
							| 10 |  | eqid |  | 
						
							| 11 |  | cyggrp |  | 
						
							| 12 | 2 11 | syl |  | 
						
							| 13 | 12 | adantr |  | 
						
							| 14 |  | simprl |  | 
						
							| 15 | 1 12 4 | hashfingrpnn |  | 
						
							| 16 |  | nndivdvds |  | 
						
							| 17 | 15 5 16 | syl2anc |  | 
						
							| 18 | 3 17 | mpbid |  | 
						
							| 19 | 18 | adantr |  | 
						
							| 20 | 1 6 10 13 14 19 | fincygsubgd |  | 
						
							| 21 |  | simpr |  | 
						
							| 22 | 21 | fveq2d |  | 
						
							| 23 |  | eqid |  | 
						
							| 24 |  | eqid |  | 
						
							| 25 |  | simprr |  | 
						
							| 26 | 5 | nnne0d |  | 
						
							| 27 |  | divconjdvds |  | 
						
							| 28 | 3 26 27 | syl2anc |  | 
						
							| 29 | 28 | adantr |  | 
						
							| 30 | 4 | adantr |  | 
						
							| 31 | 1 6 23 24 10 13 14 25 29 30 19 | fincygsubgodd |  | 
						
							| 32 | 31 | adantr |  | 
						
							| 33 | 15 | nncnd |  | 
						
							| 34 | 5 | nncnd |  | 
						
							| 35 | 15 | nnne0d |  | 
						
							| 36 | 33 34 35 26 | ddcand |  | 
						
							| 37 | 36 | ad2antrr |  | 
						
							| 38 | 22 32 37 | 3eqtrd |  | 
						
							| 39 | 20 38 | rspcedeq1vd |  | 
						
							| 40 | 9 39 | rexlimddv |  |