| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvdsgcdidd.1 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 2 |
|
dvdsgcdidd.2 |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 3 |
|
dvdsgcdidd.3 |
⊢ ( 𝜑 → 𝑀 ∥ 𝑁 ) |
| 4 |
2
|
zcnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 5 |
1
|
nncnd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
| 6 |
1
|
nnne0d |
⊢ ( 𝜑 → 𝑀 ≠ 0 ) |
| 7 |
4 5 6
|
divcan1d |
⊢ ( 𝜑 → ( ( 𝑁 / 𝑀 ) · 𝑀 ) = 𝑁 ) |
| 8 |
7
|
oveq2d |
⊢ ( 𝜑 → ( 𝑀 gcd ( ( 𝑁 / 𝑀 ) · 𝑀 ) ) = ( 𝑀 gcd 𝑁 ) ) |
| 9 |
1
|
nnnn0d |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
| 10 |
1
|
nnzd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 11 |
|
dvdsval2 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 ↔ ( 𝑁 / 𝑀 ) ∈ ℤ ) ) |
| 12 |
10 6 2 11
|
syl3anc |
⊢ ( 𝜑 → ( 𝑀 ∥ 𝑁 ↔ ( 𝑁 / 𝑀 ) ∈ ℤ ) ) |
| 13 |
3 12
|
mpbid |
⊢ ( 𝜑 → ( 𝑁 / 𝑀 ) ∈ ℤ ) |
| 14 |
9 13
|
gcdmultipled |
⊢ ( 𝜑 → ( 𝑀 gcd ( ( 𝑁 / 𝑀 ) · 𝑀 ) ) = 𝑀 ) |
| 15 |
8 14
|
eqtr3d |
⊢ ( 𝜑 → ( 𝑀 gcd 𝑁 ) = 𝑀 ) |