| Step |
Hyp |
Ref |
Expression |
| 1 |
|
6nn |
⊢ 6 ∈ ℕ |
| 2 |
1
|
nnzi |
⊢ 6 ∈ ℤ |
| 3 |
|
4z |
⊢ 4 ∈ ℤ |
| 4 |
|
gcdcom |
⊢ ( ( 6 ∈ ℤ ∧ 4 ∈ ℤ ) → ( 6 gcd 4 ) = ( 4 gcd 6 ) ) |
| 5 |
2 3 4
|
mp2an |
⊢ ( 6 gcd 4 ) = ( 4 gcd 6 ) |
| 6 |
|
4cn |
⊢ 4 ∈ ℂ |
| 7 |
|
2cn |
⊢ 2 ∈ ℂ |
| 8 |
|
4p2e6 |
⊢ ( 4 + 2 ) = 6 |
| 9 |
6 7 8
|
addcomli |
⊢ ( 2 + 4 ) = 6 |
| 10 |
9
|
oveq2i |
⊢ ( 4 gcd ( 2 + 4 ) ) = ( 4 gcd 6 ) |
| 11 |
|
2z |
⊢ 2 ∈ ℤ |
| 12 |
|
gcdadd |
⊢ ( ( 2 ∈ ℤ ∧ 2 ∈ ℤ ) → ( 2 gcd 2 ) = ( 2 gcd ( 2 + 2 ) ) ) |
| 13 |
11 11 12
|
mp2an |
⊢ ( 2 gcd 2 ) = ( 2 gcd ( 2 + 2 ) ) |
| 14 |
|
2p2e4 |
⊢ ( 2 + 2 ) = 4 |
| 15 |
14
|
oveq2i |
⊢ ( 2 gcd ( 2 + 2 ) ) = ( 2 gcd 4 ) |
| 16 |
|
gcdcom |
⊢ ( ( 2 ∈ ℤ ∧ 4 ∈ ℤ ) → ( 2 gcd 4 ) = ( 4 gcd 2 ) ) |
| 17 |
11 3 16
|
mp2an |
⊢ ( 2 gcd 4 ) = ( 4 gcd 2 ) |
| 18 |
15 17
|
eqtri |
⊢ ( 2 gcd ( 2 + 2 ) ) = ( 4 gcd 2 ) |
| 19 |
13 18
|
eqtri |
⊢ ( 2 gcd 2 ) = ( 4 gcd 2 ) |
| 20 |
|
gcdid |
⊢ ( 2 ∈ ℤ → ( 2 gcd 2 ) = ( abs ‘ 2 ) ) |
| 21 |
11 20
|
ax-mp |
⊢ ( 2 gcd 2 ) = ( abs ‘ 2 ) |
| 22 |
|
2re |
⊢ 2 ∈ ℝ |
| 23 |
|
0le2 |
⊢ 0 ≤ 2 |
| 24 |
|
absid |
⊢ ( ( 2 ∈ ℝ ∧ 0 ≤ 2 ) → ( abs ‘ 2 ) = 2 ) |
| 25 |
22 23 24
|
mp2an |
⊢ ( abs ‘ 2 ) = 2 |
| 26 |
21 25
|
eqtri |
⊢ ( 2 gcd 2 ) = 2 |
| 27 |
|
gcdadd |
⊢ ( ( 4 ∈ ℤ ∧ 2 ∈ ℤ ) → ( 4 gcd 2 ) = ( 4 gcd ( 2 + 4 ) ) ) |
| 28 |
3 11 27
|
mp2an |
⊢ ( 4 gcd 2 ) = ( 4 gcd ( 2 + 4 ) ) |
| 29 |
19 26 28
|
3eqtr3ri |
⊢ ( 4 gcd ( 2 + 4 ) ) = 2 |
| 30 |
5 10 29
|
3eqtr2i |
⊢ ( 6 gcd 4 ) = 2 |