Metamath Proof Explorer


Theorem fineqvomon

Description: If the Axiom of Infinity is negated, then the class of all natural numbers equals the proper class of all ordinal numbers. (Contributed by BTernaryTau, 30-Dec-2025)

Ref Expression
Assertion fineqvomon
|- ( Fin = _V -> _om = On )

Proof

Step Hyp Ref Expression
1 onfin2
 |-  _om = ( On i^i Fin )
2 ineq2
 |-  ( Fin = _V -> ( On i^i Fin ) = ( On i^i _V ) )
3 inv1
 |-  ( On i^i _V ) = On
4 2 3 eqtrdi
 |-  ( Fin = _V -> ( On i^i Fin ) = On )
5 1 4 eqtrid
 |-  ( Fin = _V -> _om = On )