Metamath Proof Explorer


Theorem fipjust

Description: A definition of the finite intersection property of a class based on closure under pairwise intersection of its elements is independent of the dummy variables. (Contributed by RP, 1-Jan-2020)

Ref Expression
Assertion fipjust
|- ( A. u e. A A. v e. A ( u i^i v ) e. A <-> A. x e. A A. y e. A ( x i^i y ) e. A )

Proof

Step Hyp Ref Expression
1 ineq1
 |-  ( u = x -> ( u i^i v ) = ( x i^i v ) )
2 1 eleq1d
 |-  ( u = x -> ( ( u i^i v ) e. A <-> ( x i^i v ) e. A ) )
3 ineq2
 |-  ( v = y -> ( x i^i v ) = ( x i^i y ) )
4 3 eleq1d
 |-  ( v = y -> ( ( x i^i v ) e. A <-> ( x i^i y ) e. A ) )
5 2 4 cbvral2vw
 |-  ( A. u e. A A. v e. A ( u i^i v ) e. A <-> A. x e. A A. y e. A ( x i^i y ) e. A )