Description: A definition of the finite intersection property of a class based on closure under pairwise intersection of its elements is independent of the dummy variables. (Contributed by RP, 1-Jan-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | fipjust | ⊢ ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 ∩ 𝑣 ) ∈ 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∩ 𝑦 ) ∈ 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1 | ⊢ ( 𝑢 = 𝑥 → ( 𝑢 ∩ 𝑣 ) = ( 𝑥 ∩ 𝑣 ) ) | |
2 | 1 | eleq1d | ⊢ ( 𝑢 = 𝑥 → ( ( 𝑢 ∩ 𝑣 ) ∈ 𝐴 ↔ ( 𝑥 ∩ 𝑣 ) ∈ 𝐴 ) ) |
3 | ineq2 | ⊢ ( 𝑣 = 𝑦 → ( 𝑥 ∩ 𝑣 ) = ( 𝑥 ∩ 𝑦 ) ) | |
4 | 3 | eleq1d | ⊢ ( 𝑣 = 𝑦 → ( ( 𝑥 ∩ 𝑣 ) ∈ 𝐴 ↔ ( 𝑥 ∩ 𝑦 ) ∈ 𝐴 ) ) |
5 | 2 4 | cbvral2vw | ⊢ ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 ∩ 𝑣 ) ∈ 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∩ 𝑦 ) ∈ 𝐴 ) |