| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cllem0.v |
⊢ 𝑉 = { 𝑧 ∣ 𝜑 } |
| 2 |
|
cllem0.rex |
⊢ 𝑅 ∈ 𝑈 |
| 3 |
|
cllem0.r |
⊢ ( 𝑧 = 𝑅 → ( 𝜑 ↔ 𝜓 ) ) |
| 4 |
|
cllem0.x |
⊢ ( 𝑧 = 𝑥 → ( 𝜑 ↔ 𝜒 ) ) |
| 5 |
|
cllem0.y |
⊢ ( 𝑧 = 𝑦 → ( 𝜑 ↔ 𝜃 ) ) |
| 6 |
|
cllem0.closed |
⊢ ( ( 𝜒 ∧ 𝜃 ) → 𝜓 ) |
| 7 |
2
|
elexi |
⊢ 𝑅 ∈ V |
| 8 |
7 3 1
|
elab2 |
⊢ ( 𝑅 ∈ 𝑉 ↔ 𝜓 ) |
| 9 |
8
|
ralbii |
⊢ ( ∀ 𝑦 ∈ 𝑉 𝑅 ∈ 𝑉 ↔ ∀ 𝑦 ∈ 𝑉 𝜓 ) |
| 10 |
9
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 𝑅 ∈ 𝑉 ↔ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 𝜓 ) |
| 11 |
|
df-ral |
⊢ ( ∀ 𝑦 ∈ 𝑉 𝜓 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑉 → 𝜓 ) ) |
| 12 |
11
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 𝜓 ↔ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ( 𝑦 ∈ 𝑉 → 𝜓 ) ) |
| 13 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ( 𝑦 ∈ 𝑉 → 𝜓 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝑉 → ∀ 𝑦 ( 𝑦 ∈ 𝑉 → 𝜓 ) ) ) |
| 14 |
10 12 13
|
3bitri |
⊢ ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 𝑅 ∈ 𝑉 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝑉 → ∀ 𝑦 ( 𝑦 ∈ 𝑉 → 𝜓 ) ) ) |
| 15 |
|
vex |
⊢ 𝑥 ∈ V |
| 16 |
15 4 1
|
elab2 |
⊢ ( 𝑥 ∈ 𝑉 ↔ 𝜒 ) |
| 17 |
|
vex |
⊢ 𝑦 ∈ V |
| 18 |
17 5 1
|
elab2 |
⊢ ( 𝑦 ∈ 𝑉 ↔ 𝜃 ) |
| 19 |
16 18 6
|
syl2anb |
⊢ ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → 𝜓 ) |
| 20 |
19
|
ex |
⊢ ( 𝑥 ∈ 𝑉 → ( 𝑦 ∈ 𝑉 → 𝜓 ) ) |
| 21 |
20
|
alrimiv |
⊢ ( 𝑥 ∈ 𝑉 → ∀ 𝑦 ( 𝑦 ∈ 𝑉 → 𝜓 ) ) |
| 22 |
14 21
|
mpgbir |
⊢ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 𝑅 ∈ 𝑉 |