Metamath Proof Explorer


Theorem cllem0

Description: The class of all sets with property ph ( z ) is closed under the binary operation on sets defined in R ( x , y ) . (Contributed by RP, 3-Jan-2020)

Ref Expression
Hypotheses cllem0.v 𝑉 = { 𝑧𝜑 }
cllem0.rex 𝑅𝑈
cllem0.r ( 𝑧 = 𝑅 → ( 𝜑𝜓 ) )
cllem0.x ( 𝑧 = 𝑥 → ( 𝜑𝜒 ) )
cllem0.y ( 𝑧 = 𝑦 → ( 𝜑𝜃 ) )
cllem0.closed ( ( 𝜒𝜃 ) → 𝜓 )
Assertion cllem0 𝑥𝑉𝑦𝑉 𝑅𝑉

Proof

Step Hyp Ref Expression
1 cllem0.v 𝑉 = { 𝑧𝜑 }
2 cllem0.rex 𝑅𝑈
3 cllem0.r ( 𝑧 = 𝑅 → ( 𝜑𝜓 ) )
4 cllem0.x ( 𝑧 = 𝑥 → ( 𝜑𝜒 ) )
5 cllem0.y ( 𝑧 = 𝑦 → ( 𝜑𝜃 ) )
6 cllem0.closed ( ( 𝜒𝜃 ) → 𝜓 )
7 2 elexi 𝑅 ∈ V
8 7 3 1 elab2 ( 𝑅𝑉𝜓 )
9 8 ralbii ( ∀ 𝑦𝑉 𝑅𝑉 ↔ ∀ 𝑦𝑉 𝜓 )
10 9 ralbii ( ∀ 𝑥𝑉𝑦𝑉 𝑅𝑉 ↔ ∀ 𝑥𝑉𝑦𝑉 𝜓 )
11 df-ral ( ∀ 𝑦𝑉 𝜓 ↔ ∀ 𝑦 ( 𝑦𝑉𝜓 ) )
12 11 ralbii ( ∀ 𝑥𝑉𝑦𝑉 𝜓 ↔ ∀ 𝑥𝑉𝑦 ( 𝑦𝑉𝜓 ) )
13 df-ral ( ∀ 𝑥𝑉𝑦 ( 𝑦𝑉𝜓 ) ↔ ∀ 𝑥 ( 𝑥𝑉 → ∀ 𝑦 ( 𝑦𝑉𝜓 ) ) )
14 10 12 13 3bitri ( ∀ 𝑥𝑉𝑦𝑉 𝑅𝑉 ↔ ∀ 𝑥 ( 𝑥𝑉 → ∀ 𝑦 ( 𝑦𝑉𝜓 ) ) )
15 vex 𝑥 ∈ V
16 15 4 1 elab2 ( 𝑥𝑉𝜒 )
17 vex 𝑦 ∈ V
18 17 5 1 elab2 ( 𝑦𝑉𝜃 )
19 16 18 6 syl2anb ( ( 𝑥𝑉𝑦𝑉 ) → 𝜓 )
20 19 ex ( 𝑥𝑉 → ( 𝑦𝑉𝜓 ) )
21 20 alrimiv ( 𝑥𝑉 → ∀ 𝑦 ( 𝑦𝑉𝜓 ) )
22 14 21 mpgbir 𝑥𝑉𝑦𝑉 𝑅𝑉