Metamath Proof Explorer


Theorem superficl

Description: The class of all supersets of a class has the finite intersection property. (Contributed by RP, 1-Jan-2020) (Proof shortened by RP, 3-Jan-2020)

Ref Expression
Hypothesis superficl.a 𝐴 = { 𝑧𝐵𝑧 }
Assertion superficl 𝑥𝐴𝑦𝐴 ( 𝑥𝑦 ) ∈ 𝐴

Proof

Step Hyp Ref Expression
1 superficl.a 𝐴 = { 𝑧𝐵𝑧 }
2 vex 𝑥 ∈ V
3 2 inex1 ( 𝑥𝑦 ) ∈ V
4 sseq2 ( 𝑧 = ( 𝑥𝑦 ) → ( 𝐵𝑧𝐵 ⊆ ( 𝑥𝑦 ) ) )
5 sseq2 ( 𝑧 = 𝑥 → ( 𝐵𝑧𝐵𝑥 ) )
6 sseq2 ( 𝑧 = 𝑦 → ( 𝐵𝑧𝐵𝑦 ) )
7 ssin ( ( 𝐵𝑥𝐵𝑦 ) ↔ 𝐵 ⊆ ( 𝑥𝑦 ) )
8 7 biimpi ( ( 𝐵𝑥𝐵𝑦 ) → 𝐵 ⊆ ( 𝑥𝑦 ) )
9 1 3 4 5 6 8 cllem0 𝑥𝐴𝑦𝐴 ( 𝑥𝑦 ) ∈ 𝐴