Metamath Proof Explorer


Theorem superficl

Description: The class of all supersets of a class has the finite intersection property. (Contributed by RP, 1-Jan-2020) (Proof shortened by RP, 3-Jan-2020)

Ref Expression
Hypothesis superficl.a A = z | B z
Assertion superficl x A y A x y A

Proof

Step Hyp Ref Expression
1 superficl.a A = z | B z
2 vex x V
3 2 inex1 x y V
4 sseq2 z = x y B z B x y
5 sseq2 z = x B z B x
6 sseq2 z = y B z B y
7 ssin B x B y B x y
8 7 biimpi B x B y B x y
9 1 3 4 5 6 8 cllem0 x A y A x y A