Metamath Proof Explorer


Theorem superficl

Description: The class of all supersets of a class has the finite intersection property. (Contributed by RP, 1-Jan-2020) (Proof shortened by RP, 3-Jan-2020)

Ref Expression
Hypothesis superficl.a
|- A = { z | B C_ z }
Assertion superficl
|- A. x e. A A. y e. A ( x i^i y ) e. A

Proof

Step Hyp Ref Expression
1 superficl.a
 |-  A = { z | B C_ z }
2 vex
 |-  x e. _V
3 2 inex1
 |-  ( x i^i y ) e. _V
4 sseq2
 |-  ( z = ( x i^i y ) -> ( B C_ z <-> B C_ ( x i^i y ) ) )
5 sseq2
 |-  ( z = x -> ( B C_ z <-> B C_ x ) )
6 sseq2
 |-  ( z = y -> ( B C_ z <-> B C_ y ) )
7 ssin
 |-  ( ( B C_ x /\ B C_ y ) <-> B C_ ( x i^i y ) )
8 7 biimpi
 |-  ( ( B C_ x /\ B C_ y ) -> B C_ ( x i^i y ) )
9 1 3 4 5 6 8 cllem0
 |-  A. x e. A A. y e. A ( x i^i y ) e. A