Description: The class of all supersets of a class has the finite intersection property. (Contributed by RP, 1-Jan-2020) (Proof shortened by RP, 3-Jan-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | superficl.a | |- A = { z | B C_ z } |
|
Assertion | superficl | |- A. x e. A A. y e. A ( x i^i y ) e. A |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | superficl.a | |- A = { z | B C_ z } |
|
2 | vex | |- x e. _V |
|
3 | 2 | inex1 | |- ( x i^i y ) e. _V |
4 | sseq2 | |- ( z = ( x i^i y ) -> ( B C_ z <-> B C_ ( x i^i y ) ) ) |
|
5 | sseq2 | |- ( z = x -> ( B C_ z <-> B C_ x ) ) |
|
6 | sseq2 | |- ( z = y -> ( B C_ z <-> B C_ y ) ) |
|
7 | ssin | |- ( ( B C_ x /\ B C_ y ) <-> B C_ ( x i^i y ) ) |
|
8 | 7 | biimpi | |- ( ( B C_ x /\ B C_ y ) -> B C_ ( x i^i y ) ) |
9 | 1 3 4 5 6 8 | cllem0 | |- A. x e. A A. y e. A ( x i^i y ) e. A |