Metamath Proof Explorer


Theorem superuncl

Description: The class of all supersets of a class is closed under binary union. (Contributed by RP, 3-Jan-2020)

Ref Expression
Hypothesis superficl.a
|- A = { z | B C_ z }
Assertion superuncl
|- A. x e. A A. y e. A ( x u. y ) e. A

Proof

Step Hyp Ref Expression
1 superficl.a
 |-  A = { z | B C_ z }
2 vex
 |-  x e. _V
3 vex
 |-  y e. _V
4 2 3 unex
 |-  ( x u. y ) e. _V
5 sseq2
 |-  ( z = ( x u. y ) -> ( B C_ z <-> B C_ ( x u. y ) ) )
6 sseq2
 |-  ( z = x -> ( B C_ z <-> B C_ x ) )
7 sseq2
 |-  ( z = y -> ( B C_ z <-> B C_ y ) )
8 ssun3
 |-  ( B C_ x -> B C_ ( x u. y ) )
9 8 adantr
 |-  ( ( B C_ x /\ B C_ y ) -> B C_ ( x u. y ) )
10 1 4 5 6 7 9 cllem0
 |-  A. x e. A A. y e. A ( x u. y ) e. A