Description: The class of all supersets of a class is closed under binary union. (Contributed by RP, 3-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | superficl.a | |- A = { z | B C_ z } |
|
| Assertion | superuncl | |- A. x e. A A. y e. A ( x u. y ) e. A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | superficl.a | |- A = { z | B C_ z } |
|
| 2 | vex | |- x e. _V |
|
| 3 | vex | |- y e. _V |
|
| 4 | 2 3 | unex | |- ( x u. y ) e. _V |
| 5 | sseq2 | |- ( z = ( x u. y ) -> ( B C_ z <-> B C_ ( x u. y ) ) ) |
|
| 6 | sseq2 | |- ( z = x -> ( B C_ z <-> B C_ x ) ) |
|
| 7 | sseq2 | |- ( z = y -> ( B C_ z <-> B C_ y ) ) |
|
| 8 | ssun3 | |- ( B C_ x -> B C_ ( x u. y ) ) |
|
| 9 | 8 | adantr | |- ( ( B C_ x /\ B C_ y ) -> B C_ ( x u. y ) ) |
| 10 | 1 4 5 6 7 9 | cllem0 | |- A. x e. A A. y e. A ( x u. y ) e. A |