Metamath Proof Explorer


Theorem ssficl

Description: The class of all subsets of a class has the finite intersection property. (Contributed by RP, 1-Jan-2020) (Proof shortened by RP, 3-Jan-2020)

Ref Expression
Hypothesis ssficl.a
|- A = { z | z C_ B }
Assertion ssficl
|- A. x e. A A. y e. A ( x i^i y ) e. A

Proof

Step Hyp Ref Expression
1 ssficl.a
 |-  A = { z | z C_ B }
2 vex
 |-  x e. _V
3 2 inex1
 |-  ( x i^i y ) e. _V
4 sseq1
 |-  ( z = ( x i^i y ) -> ( z C_ B <-> ( x i^i y ) C_ B ) )
5 sseq1
 |-  ( z = x -> ( z C_ B <-> x C_ B ) )
6 sseq1
 |-  ( z = y -> ( z C_ B <-> y C_ B ) )
7 ssinss1
 |-  ( x C_ B -> ( x i^i y ) C_ B )
8 7 adantr
 |-  ( ( x C_ B /\ y C_ B ) -> ( x i^i y ) C_ B )
9 1 3 4 5 6 8 cllem0
 |-  A. x e. A A. y e. A ( x i^i y ) e. A