Description: The class of all subsets of a class has the finite intersection property. (Contributed by RP, 1-Jan-2020) (Proof shortened by RP, 3-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ssficl.a | |- A = { z | z C_ B } | |
| Assertion | ssficl | |- A. x e. A A. y e. A ( x i^i y ) e. A | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ssficl.a |  |-  A = { z | z C_ B } | |
| 2 | vex | |- x e. _V | |
| 3 | 2 | inex1 | |- ( x i^i y ) e. _V | 
| 4 | sseq1 | |- ( z = ( x i^i y ) -> ( z C_ B <-> ( x i^i y ) C_ B ) ) | |
| 5 | sseq1 | |- ( z = x -> ( z C_ B <-> x C_ B ) ) | |
| 6 | sseq1 | |- ( z = y -> ( z C_ B <-> y C_ B ) ) | |
| 7 | ssinss1 | |- ( x C_ B -> ( x i^i y ) C_ B ) | |
| 8 | 7 | adantr | |- ( ( x C_ B /\ y C_ B ) -> ( x i^i y ) C_ B ) | 
| 9 | 1 3 4 5 6 8 | cllem0 | |- A. x e. A A. y e. A ( x i^i y ) e. A |