Metamath Proof Explorer


Theorem ssficl

Description: The class of all subsets of a class has the finite intersection property. (Contributed by RP, 1-Jan-2020) (Proof shortened by RP, 3-Jan-2020)

Ref Expression
Hypothesis ssficl.a A=z|zB
Assertion ssficl xAyAxyA

Proof

Step Hyp Ref Expression
1 ssficl.a A=z|zB
2 vex xV
3 2 inex1 xyV
4 sseq1 z=xyzBxyB
5 sseq1 z=xzBxB
6 sseq1 z=yzByB
7 ssinss1 xBxyB
8 7 adantr xByBxyB
9 1 3 4 5 6 8 cllem0 xAyAxyA