Metamath Proof Explorer


Theorem ssuncl

Description: The class of all subsets of a class is closed under binary union. (Contributed by RP, 3-Jan-2020)

Ref Expression
Hypothesis ssficl.a A=z|zB
Assertion ssuncl xAyAxyA

Proof

Step Hyp Ref Expression
1 ssficl.a A=z|zB
2 vex xV
3 vex yV
4 2 3 unex xyV
5 sseq1 z=xyzBxyB
6 sseq1 z=xzBxB
7 sseq1 z=yzByB
8 unss xByBxyB
9 8 biimpi xByBxyB
10 1 4 5 6 7 9 cllem0 xAyAxyA