Metamath Proof Explorer


Theorem ssuncl

Description: The class of all subsets of a class is closed under binary union. (Contributed by RP, 3-Jan-2020)

Ref Expression
Hypothesis ssficl.a A = z | z B
Assertion ssuncl x A y A x y A

Proof

Step Hyp Ref Expression
1 ssficl.a A = z | z B
2 vex x V
3 vex y V
4 2 3 unex x y V
5 sseq1 z = x y z B x y B
6 sseq1 z = x z B x B
7 sseq1 z = y z B y B
8 unss x B y B x y B
9 8 biimpi x B y B x y B
10 1 4 5 6 7 9 cllem0 x A y A x y A