Metamath Proof Explorer


Theorem ssdifcl

Description: The class of all subsets of a class is closed under class difference. (Contributed by RP, 3-Jan-2020)

Ref Expression
Hypothesis ssficl.a A=z|zB
Assertion ssdifcl xAyAxyA

Proof

Step Hyp Ref Expression
1 ssficl.a A=z|zB
2 vex xV
3 2 difexi xyV
4 sseq1 z=xyzBxyB
5 sseq1 z=xzBxB
6 sseq1 z=yzByB
7 ssdifss xBxyB
8 7 adantr xByBxyB
9 1 3 4 5 6 8 cllem0 xAyAxyA