Description: The class of all subsets of a class is closed under class difference. (Contributed by RP, 3-Jan-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ssficl.a | |- A = { z | z C_ B } |
|
Assertion | ssdifcl | |- A. x e. A A. y e. A ( x \ y ) e. A |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssficl.a | |- A = { z | z C_ B } |
|
2 | vex | |- x e. _V |
|
3 | 2 | difexi | |- ( x \ y ) e. _V |
4 | sseq1 | |- ( z = ( x \ y ) -> ( z C_ B <-> ( x \ y ) C_ B ) ) |
|
5 | sseq1 | |- ( z = x -> ( z C_ B <-> x C_ B ) ) |
|
6 | sseq1 | |- ( z = y -> ( z C_ B <-> y C_ B ) ) |
|
7 | ssdifss | |- ( x C_ B -> ( x \ y ) C_ B ) |
|
8 | 7 | adantr | |- ( ( x C_ B /\ y C_ B ) -> ( x \ y ) C_ B ) |
9 | 1 3 4 5 6 8 | cllem0 | |- A. x e. A A. y e. A ( x \ y ) e. A |