Description: The class of all subsets of a class is closed under class difference. (Contributed by RP, 3-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ssficl.a | ⊢ 𝐴 = { 𝑧 ∣ 𝑧 ⊆ 𝐵 } | |
| Assertion | ssdifcl | ⊢ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∖ 𝑦 ) ∈ 𝐴 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ssficl.a | ⊢ 𝐴 = { 𝑧 ∣ 𝑧 ⊆ 𝐵 } | |
| 2 | vex | ⊢ 𝑥 ∈ V | |
| 3 | 2 | difexi | ⊢ ( 𝑥 ∖ 𝑦 ) ∈ V | 
| 4 | sseq1 | ⊢ ( 𝑧 = ( 𝑥 ∖ 𝑦 ) → ( 𝑧 ⊆ 𝐵 ↔ ( 𝑥 ∖ 𝑦 ) ⊆ 𝐵 ) ) | |
| 5 | sseq1 | ⊢ ( 𝑧 = 𝑥 → ( 𝑧 ⊆ 𝐵 ↔ 𝑥 ⊆ 𝐵 ) ) | |
| 6 | sseq1 | ⊢ ( 𝑧 = 𝑦 → ( 𝑧 ⊆ 𝐵 ↔ 𝑦 ⊆ 𝐵 ) ) | |
| 7 | ssdifss | ⊢ ( 𝑥 ⊆ 𝐵 → ( 𝑥 ∖ 𝑦 ) ⊆ 𝐵 ) | |
| 8 | 7 | adantr | ⊢ ( ( 𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝐵 ) → ( 𝑥 ∖ 𝑦 ) ⊆ 𝐵 ) | 
| 9 | 1 3 4 5 6 8 | cllem0 | ⊢ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∖ 𝑦 ) ∈ 𝐴 |