| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ssficl.a | ⊢ 𝐴  =  { 𝑧  ∣  𝑧  ⊆  𝐵 } | 
						
							| 2 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 3 | 2 | difexi | ⊢ ( 𝑥  ∖  𝑦 )  ∈  V | 
						
							| 4 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 5 | 4 | difexi | ⊢ ( 𝑦  ∖  𝑥 )  ∈  V | 
						
							| 6 | 3 5 | unex | ⊢ ( ( 𝑥  ∖  𝑦 )  ∪  ( 𝑦  ∖  𝑥 ) )  ∈  V | 
						
							| 7 |  | sseq1 | ⊢ ( 𝑧  =  ( ( 𝑥  ∖  𝑦 )  ∪  ( 𝑦  ∖  𝑥 ) )  →  ( 𝑧  ⊆  𝐵  ↔  ( ( 𝑥  ∖  𝑦 )  ∪  ( 𝑦  ∖  𝑥 ) )  ⊆  𝐵 ) ) | 
						
							| 8 |  | sseq1 | ⊢ ( 𝑧  =  𝑥  →  ( 𝑧  ⊆  𝐵  ↔  𝑥  ⊆  𝐵 ) ) | 
						
							| 9 |  | sseq1 | ⊢ ( 𝑧  =  𝑦  →  ( 𝑧  ⊆  𝐵  ↔  𝑦  ⊆  𝐵 ) ) | 
						
							| 10 |  | ssdifss | ⊢ ( 𝑥  ⊆  𝐵  →  ( 𝑥  ∖  𝑦 )  ⊆  𝐵 ) | 
						
							| 11 |  | ssdifss | ⊢ ( 𝑦  ⊆  𝐵  →  ( 𝑦  ∖  𝑥 )  ⊆  𝐵 ) | 
						
							| 12 |  | unss | ⊢ ( ( ( 𝑥  ∖  𝑦 )  ⊆  𝐵  ∧  ( 𝑦  ∖  𝑥 )  ⊆  𝐵 )  ↔  ( ( 𝑥  ∖  𝑦 )  ∪  ( 𝑦  ∖  𝑥 ) )  ⊆  𝐵 ) | 
						
							| 13 | 12 | biimpi | ⊢ ( ( ( 𝑥  ∖  𝑦 )  ⊆  𝐵  ∧  ( 𝑦  ∖  𝑥 )  ⊆  𝐵 )  →  ( ( 𝑥  ∖  𝑦 )  ∪  ( 𝑦  ∖  𝑥 ) )  ⊆  𝐵 ) | 
						
							| 14 | 10 11 13 | syl2an | ⊢ ( ( 𝑥  ⊆  𝐵  ∧  𝑦  ⊆  𝐵 )  →  ( ( 𝑥  ∖  𝑦 )  ∪  ( 𝑦  ∖  𝑥 ) )  ⊆  𝐵 ) | 
						
							| 15 | 1 6 7 8 9 14 | cllem0 | ⊢ ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( ( 𝑥  ∖  𝑦 )  ∪  ( 𝑦  ∖  𝑥 ) )  ∈  𝐴 |