| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fiinfi.a | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ∩  𝑦 )  ∈  𝐴 ) | 
						
							| 2 |  | fiinfi.b | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑥  ∩  𝑦 )  ∈  𝐵 ) | 
						
							| 3 |  | fiinfi.c | ⊢ ( 𝜑  →  𝐶  =  ( 𝐴  ∩  𝐵 ) ) | 
						
							| 4 |  | elinel1 | ⊢ ( 𝑥  ∈  ( 𝐴  ∩  𝐵 )  →  𝑥  ∈  𝐴 ) | 
						
							| 5 |  | elinel1 | ⊢ ( 𝑦  ∈  ( 𝐴  ∩  𝐵 )  →  𝑦  ∈  𝐴 ) | 
						
							| 6 | 5 | imim1i | ⊢ ( ( 𝑦  ∈  𝐴  →  ( 𝑥  ∩  𝑦 )  ∈  𝐴 )  →  ( 𝑦  ∈  ( 𝐴  ∩  𝐵 )  →  ( 𝑥  ∩  𝑦 )  ∈  𝐴 ) ) | 
						
							| 7 | 6 | ralimi2 | ⊢ ( ∀ 𝑦  ∈  𝐴 ( 𝑥  ∩  𝑦 )  ∈  𝐴  →  ∀ 𝑦  ∈  ( 𝐴  ∩  𝐵 ) ( 𝑥  ∩  𝑦 )  ∈  𝐴 ) | 
						
							| 8 | 4 7 | imim12i | ⊢ ( ( 𝑥  ∈  𝐴  →  ∀ 𝑦  ∈  𝐴 ( 𝑥  ∩  𝑦 )  ∈  𝐴 )  →  ( 𝑥  ∈  ( 𝐴  ∩  𝐵 )  →  ∀ 𝑦  ∈  ( 𝐴  ∩  𝐵 ) ( 𝑥  ∩  𝑦 )  ∈  𝐴 ) ) | 
						
							| 9 | 8 | ralimi2 | ⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ∩  𝑦 )  ∈  𝐴  →  ∀ 𝑥  ∈  ( 𝐴  ∩  𝐵 ) ∀ 𝑦  ∈  ( 𝐴  ∩  𝐵 ) ( 𝑥  ∩  𝑦 )  ∈  𝐴 ) | 
						
							| 10 | 1 9 | syl | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ( 𝐴  ∩  𝐵 ) ∀ 𝑦  ∈  ( 𝐴  ∩  𝐵 ) ( 𝑥  ∩  𝑦 )  ∈  𝐴 ) | 
						
							| 11 |  | elinel2 | ⊢ ( 𝑥  ∈  ( 𝐴  ∩  𝐵 )  →  𝑥  ∈  𝐵 ) | 
						
							| 12 |  | elinel2 | ⊢ ( 𝑦  ∈  ( 𝐴  ∩  𝐵 )  →  𝑦  ∈  𝐵 ) | 
						
							| 13 | 12 | imim1i | ⊢ ( ( 𝑦  ∈  𝐵  →  ( 𝑥  ∩  𝑦 )  ∈  𝐵 )  →  ( 𝑦  ∈  ( 𝐴  ∩  𝐵 )  →  ( 𝑥  ∩  𝑦 )  ∈  𝐵 ) ) | 
						
							| 14 | 13 | ralimi2 | ⊢ ( ∀ 𝑦  ∈  𝐵 ( 𝑥  ∩  𝑦 )  ∈  𝐵  →  ∀ 𝑦  ∈  ( 𝐴  ∩  𝐵 ) ( 𝑥  ∩  𝑦 )  ∈  𝐵 ) | 
						
							| 15 | 11 14 | imim12i | ⊢ ( ( 𝑥  ∈  𝐵  →  ∀ 𝑦  ∈  𝐵 ( 𝑥  ∩  𝑦 )  ∈  𝐵 )  →  ( 𝑥  ∈  ( 𝐴  ∩  𝐵 )  →  ∀ 𝑦  ∈  ( 𝐴  ∩  𝐵 ) ( 𝑥  ∩  𝑦 )  ∈  𝐵 ) ) | 
						
							| 16 | 15 | ralimi2 | ⊢ ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑥  ∩  𝑦 )  ∈  𝐵  →  ∀ 𝑥  ∈  ( 𝐴  ∩  𝐵 ) ∀ 𝑦  ∈  ( 𝐴  ∩  𝐵 ) ( 𝑥  ∩  𝑦 )  ∈  𝐵 ) | 
						
							| 17 | 2 16 | syl | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ( 𝐴  ∩  𝐵 ) ∀ 𝑦  ∈  ( 𝐴  ∩  𝐵 ) ( 𝑥  ∩  𝑦 )  ∈  𝐵 ) | 
						
							| 18 |  | r19.26-2 | ⊢ ( ∀ 𝑥  ∈  ( 𝐴  ∩  𝐵 ) ∀ 𝑦  ∈  ( 𝐴  ∩  𝐵 ) ( ( 𝑥  ∩  𝑦 )  ∈  𝐴  ∧  ( 𝑥  ∩  𝑦 )  ∈  𝐵 )  ↔  ( ∀ 𝑥  ∈  ( 𝐴  ∩  𝐵 ) ∀ 𝑦  ∈  ( 𝐴  ∩  𝐵 ) ( 𝑥  ∩  𝑦 )  ∈  𝐴  ∧  ∀ 𝑥  ∈  ( 𝐴  ∩  𝐵 ) ∀ 𝑦  ∈  ( 𝐴  ∩  𝐵 ) ( 𝑥  ∩  𝑦 )  ∈  𝐵 ) ) | 
						
							| 19 | 10 17 18 | sylanbrc | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ( 𝐴  ∩  𝐵 ) ∀ 𝑦  ∈  ( 𝐴  ∩  𝐵 ) ( ( 𝑥  ∩  𝑦 )  ∈  𝐴  ∧  ( 𝑥  ∩  𝑦 )  ∈  𝐵 ) ) | 
						
							| 20 |  | elin | ⊢ ( ( 𝑥  ∩  𝑦 )  ∈  ( 𝐴  ∩  𝐵 )  ↔  ( ( 𝑥  ∩  𝑦 )  ∈  𝐴  ∧  ( 𝑥  ∩  𝑦 )  ∈  𝐵 ) ) | 
						
							| 21 | 20 | 2ralbii | ⊢ ( ∀ 𝑥  ∈  ( 𝐴  ∩  𝐵 ) ∀ 𝑦  ∈  ( 𝐴  ∩  𝐵 ) ( 𝑥  ∩  𝑦 )  ∈  ( 𝐴  ∩  𝐵 )  ↔  ∀ 𝑥  ∈  ( 𝐴  ∩  𝐵 ) ∀ 𝑦  ∈  ( 𝐴  ∩  𝐵 ) ( ( 𝑥  ∩  𝑦 )  ∈  𝐴  ∧  ( 𝑥  ∩  𝑦 )  ∈  𝐵 ) ) | 
						
							| 22 | 19 21 | sylibr | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ( 𝐴  ∩  𝐵 ) ∀ 𝑦  ∈  ( 𝐴  ∩  𝐵 ) ( 𝑥  ∩  𝑦 )  ∈  ( 𝐴  ∩  𝐵 ) ) | 
						
							| 23 | 3 | eleq2d | ⊢ ( 𝜑  →  ( ( 𝑥  ∩  𝑦 )  ∈  𝐶  ↔  ( 𝑥  ∩  𝑦 )  ∈  ( 𝐴  ∩  𝐵 ) ) ) | 
						
							| 24 | 23 | ralbidv | ⊢ ( 𝜑  →  ( ∀ 𝑦  ∈  ( 𝐴  ∩  𝐵 ) ( 𝑥  ∩  𝑦 )  ∈  𝐶  ↔  ∀ 𝑦  ∈  ( 𝐴  ∩  𝐵 ) ( 𝑥  ∩  𝑦 )  ∈  ( 𝐴  ∩  𝐵 ) ) ) | 
						
							| 25 | 24 | ralbidv | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  ( 𝐴  ∩  𝐵 ) ∀ 𝑦  ∈  ( 𝐴  ∩  𝐵 ) ( 𝑥  ∩  𝑦 )  ∈  𝐶  ↔  ∀ 𝑥  ∈  ( 𝐴  ∩  𝐵 ) ∀ 𝑦  ∈  ( 𝐴  ∩  𝐵 ) ( 𝑥  ∩  𝑦 )  ∈  ( 𝐴  ∩  𝐵 ) ) ) | 
						
							| 26 | 22 25 | mpbird | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ( 𝐴  ∩  𝐵 ) ∀ 𝑦  ∈  ( 𝐴  ∩  𝐵 ) ( 𝑥  ∩  𝑦 )  ∈  𝐶 ) | 
						
							| 27 | 3 | raleqdv | ⊢ ( 𝜑  →  ( ∀ 𝑦  ∈  𝐶 ( 𝑥  ∩  𝑦 )  ∈  𝐶  ↔  ∀ 𝑦  ∈  ( 𝐴  ∩  𝐵 ) ( 𝑥  ∩  𝑦 )  ∈  𝐶 ) ) | 
						
							| 28 | 27 | ralbidv | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  ( 𝐴  ∩  𝐵 ) ∀ 𝑦  ∈  𝐶 ( 𝑥  ∩  𝑦 )  ∈  𝐶  ↔  ∀ 𝑥  ∈  ( 𝐴  ∩  𝐵 ) ∀ 𝑦  ∈  ( 𝐴  ∩  𝐵 ) ( 𝑥  ∩  𝑦 )  ∈  𝐶 ) ) | 
						
							| 29 | 26 28 | mpbird | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ( 𝐴  ∩  𝐵 ) ∀ 𝑦  ∈  𝐶 ( 𝑥  ∩  𝑦 )  ∈  𝐶 ) | 
						
							| 30 | 3 | raleqdv | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  𝐶 ∀ 𝑦  ∈  𝐶 ( 𝑥  ∩  𝑦 )  ∈  𝐶  ↔  ∀ 𝑥  ∈  ( 𝐴  ∩  𝐵 ) ∀ 𝑦  ∈  𝐶 ( 𝑥  ∩  𝑦 )  ∈  𝐶 ) ) | 
						
							| 31 | 29 30 | mpbird | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐶 ∀ 𝑦  ∈  𝐶 ( 𝑥  ∩  𝑦 )  ∈  𝐶 ) |