Description: The class of all subsets of a class is closed under symmetric difference. (Contributed by RP, 3-Jan-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ssficl.a | |
|
Assertion | sssymdifcl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssficl.a | |
|
2 | vex | |
|
3 | 2 | difexi | |
4 | vex | |
|
5 | 4 | difexi | |
6 | 3 5 | unex | |
7 | sseq1 | |
|
8 | sseq1 | |
|
9 | sseq1 | |
|
10 | ssdifss | |
|
11 | ssdifss | |
|
12 | unss | |
|
13 | 12 | biimpi | |
14 | 10 11 13 | syl2an | |
15 | 1 6 7 8 9 14 | cllem0 | |