Metamath Proof Explorer


Theorem sssymdifcl

Description: The class of all subsets of a class is closed under symmetric difference. (Contributed by RP, 3-Jan-2020)

Ref Expression
Hypothesis ssficl.a A=z|zB
Assertion sssymdifcl xAyAxyyxA

Proof

Step Hyp Ref Expression
1 ssficl.a A=z|zB
2 vex xV
3 2 difexi xyV
4 vex yV
5 4 difexi yxV
6 3 5 unex xyyxV
7 sseq1 z=xyyxzBxyyxB
8 sseq1 z=xzBxB
9 sseq1 z=yzByB
10 ssdifss xBxyB
11 ssdifss yByxB
12 unss xyByxBxyyxB
13 12 biimpi xyByxBxyyxB
14 10 11 13 syl2an xByBxyyxB
15 1 6 7 8 9 14 cllem0 xAyAxyyxA