Description: The class of all subsets of a class is closed under binary union. (Contributed by RP, 3-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ssficl.a | |- A = { z | z C_ B } | |
| Assertion | ssuncl | |- A. x e. A A. y e. A ( x u. y ) e. A | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ssficl.a |  |-  A = { z | z C_ B } | |
| 2 | vex | |- x e. _V | |
| 3 | vex | |- y e. _V | |
| 4 | 2 3 | unex | |- ( x u. y ) e. _V | 
| 5 | sseq1 | |- ( z = ( x u. y ) -> ( z C_ B <-> ( x u. y ) C_ B ) ) | |
| 6 | sseq1 | |- ( z = x -> ( z C_ B <-> x C_ B ) ) | |
| 7 | sseq1 | |- ( z = y -> ( z C_ B <-> y C_ B ) ) | |
| 8 | unss | |- ( ( x C_ B /\ y C_ B ) <-> ( x u. y ) C_ B ) | |
| 9 | 8 | biimpi | |- ( ( x C_ B /\ y C_ B ) -> ( x u. y ) C_ B ) | 
| 10 | 1 4 5 6 7 9 | cllem0 | |- A. x e. A A. y e. A ( x u. y ) e. A |