Step |
Hyp |
Ref |
Expression |
1 |
|
flt4lem4.a |
|- ( ph -> A e. NN ) |
2 |
|
flt4lem4.b |
|- ( ph -> B e. NN ) |
3 |
|
flt4lem4.c |
|- ( ph -> C e. NN ) |
4 |
|
flt4lem4.1 |
|- ( ph -> ( A gcd B ) = 1 ) |
5 |
|
flt4lem4.2 |
|- ( ph -> ( A x. B ) = ( C ^ 2 ) ) |
6 |
5
|
eqcomd |
|- ( ph -> ( C ^ 2 ) = ( A x. B ) ) |
7 |
1
|
nnnn0d |
|- ( ph -> A e. NN0 ) |
8 |
2
|
nnnn0d |
|- ( ph -> B e. NN0 ) |
9 |
8
|
nn0zd |
|- ( ph -> B e. ZZ ) |
10 |
3
|
nnnn0d |
|- ( ph -> C e. NN0 ) |
11 |
4
|
oveq1d |
|- ( ph -> ( ( A gcd B ) gcd C ) = ( 1 gcd C ) ) |
12 |
10
|
nn0zd |
|- ( ph -> C e. ZZ ) |
13 |
|
1gcd |
|- ( C e. ZZ -> ( 1 gcd C ) = 1 ) |
14 |
12 13
|
syl |
|- ( ph -> ( 1 gcd C ) = 1 ) |
15 |
11 14
|
eqtrd |
|- ( ph -> ( ( A gcd B ) gcd C ) = 1 ) |
16 |
|
coprimeprodsq |
|- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 ) -> ( ( C ^ 2 ) = ( A x. B ) -> A = ( ( A gcd C ) ^ 2 ) ) ) |
17 |
7 9 10 15 16
|
syl31anc |
|- ( ph -> ( ( C ^ 2 ) = ( A x. B ) -> A = ( ( A gcd C ) ^ 2 ) ) ) |
18 |
6 17
|
mpd |
|- ( ph -> A = ( ( A gcd C ) ^ 2 ) ) |
19 |
1
|
nnzd |
|- ( ph -> A e. ZZ ) |
20 |
|
coprimeprodsq2 |
|- ( ( ( A e. ZZ /\ B e. NN0 /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 ) -> ( ( C ^ 2 ) = ( A x. B ) -> B = ( ( B gcd C ) ^ 2 ) ) ) |
21 |
19 8 10 15 20
|
syl31anc |
|- ( ph -> ( ( C ^ 2 ) = ( A x. B ) -> B = ( ( B gcd C ) ^ 2 ) ) ) |
22 |
6 21
|
mpd |
|- ( ph -> B = ( ( B gcd C ) ^ 2 ) ) |
23 |
18 22
|
jca |
|- ( ph -> ( A = ( ( A gcd C ) ^ 2 ) /\ B = ( ( B gcd C ) ^ 2 ) ) ) |