| Step |
Hyp |
Ref |
Expression |
| 1 |
|
flt4lem4.a |
|- ( ph -> A e. NN ) |
| 2 |
|
flt4lem4.b |
|- ( ph -> B e. NN ) |
| 3 |
|
flt4lem4.c |
|- ( ph -> C e. NN ) |
| 4 |
|
flt4lem4.1 |
|- ( ph -> ( A gcd B ) = 1 ) |
| 5 |
|
flt4lem4.2 |
|- ( ph -> ( A x. B ) = ( C ^ 2 ) ) |
| 6 |
5
|
eqcomd |
|- ( ph -> ( C ^ 2 ) = ( A x. B ) ) |
| 7 |
1
|
nnnn0d |
|- ( ph -> A e. NN0 ) |
| 8 |
2
|
nnnn0d |
|- ( ph -> B e. NN0 ) |
| 9 |
8
|
nn0zd |
|- ( ph -> B e. ZZ ) |
| 10 |
3
|
nnnn0d |
|- ( ph -> C e. NN0 ) |
| 11 |
4
|
oveq1d |
|- ( ph -> ( ( A gcd B ) gcd C ) = ( 1 gcd C ) ) |
| 12 |
10
|
nn0zd |
|- ( ph -> C e. ZZ ) |
| 13 |
|
1gcd |
|- ( C e. ZZ -> ( 1 gcd C ) = 1 ) |
| 14 |
12 13
|
syl |
|- ( ph -> ( 1 gcd C ) = 1 ) |
| 15 |
11 14
|
eqtrd |
|- ( ph -> ( ( A gcd B ) gcd C ) = 1 ) |
| 16 |
|
coprimeprodsq |
|- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 ) -> ( ( C ^ 2 ) = ( A x. B ) -> A = ( ( A gcd C ) ^ 2 ) ) ) |
| 17 |
7 9 10 15 16
|
syl31anc |
|- ( ph -> ( ( C ^ 2 ) = ( A x. B ) -> A = ( ( A gcd C ) ^ 2 ) ) ) |
| 18 |
6 17
|
mpd |
|- ( ph -> A = ( ( A gcd C ) ^ 2 ) ) |
| 19 |
1
|
nnzd |
|- ( ph -> A e. ZZ ) |
| 20 |
|
coprimeprodsq2 |
|- ( ( ( A e. ZZ /\ B e. NN0 /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 ) -> ( ( C ^ 2 ) = ( A x. B ) -> B = ( ( B gcd C ) ^ 2 ) ) ) |
| 21 |
19 8 10 15 20
|
syl31anc |
|- ( ph -> ( ( C ^ 2 ) = ( A x. B ) -> B = ( ( B gcd C ) ^ 2 ) ) ) |
| 22 |
6 21
|
mpd |
|- ( ph -> B = ( ( B gcd C ) ^ 2 ) ) |
| 23 |
18 22
|
jca |
|- ( ph -> ( A = ( ( A gcd C ) ^ 2 ) /\ B = ( ( B gcd C ) ^ 2 ) ) ) |