| Step |
Hyp |
Ref |
Expression |
| 1 |
|
flt4lem4.a |
⊢ ( 𝜑 → 𝐴 ∈ ℕ ) |
| 2 |
|
flt4lem4.b |
⊢ ( 𝜑 → 𝐵 ∈ ℕ ) |
| 3 |
|
flt4lem4.c |
⊢ ( 𝜑 → 𝐶 ∈ ℕ ) |
| 4 |
|
flt4lem4.1 |
⊢ ( 𝜑 → ( 𝐴 gcd 𝐵 ) = 1 ) |
| 5 |
|
flt4lem4.2 |
⊢ ( 𝜑 → ( 𝐴 · 𝐵 ) = ( 𝐶 ↑ 2 ) ) |
| 6 |
5
|
eqcomd |
⊢ ( 𝜑 → ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) ) |
| 7 |
1
|
nnnn0d |
⊢ ( 𝜑 → 𝐴 ∈ ℕ0 ) |
| 8 |
2
|
nnnn0d |
⊢ ( 𝜑 → 𝐵 ∈ ℕ0 ) |
| 9 |
8
|
nn0zd |
⊢ ( 𝜑 → 𝐵 ∈ ℤ ) |
| 10 |
3
|
nnnn0d |
⊢ ( 𝜑 → 𝐶 ∈ ℕ0 ) |
| 11 |
4
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = ( 1 gcd 𝐶 ) ) |
| 12 |
10
|
nn0zd |
⊢ ( 𝜑 → 𝐶 ∈ ℤ ) |
| 13 |
|
1gcd |
⊢ ( 𝐶 ∈ ℤ → ( 1 gcd 𝐶 ) = 1 ) |
| 14 |
12 13
|
syl |
⊢ ( 𝜑 → ( 1 gcd 𝐶 ) = 1 ) |
| 15 |
11 14
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ) |
| 16 |
|
coprimeprodsq |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ) → ( ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) → 𝐴 = ( ( 𝐴 gcd 𝐶 ) ↑ 2 ) ) ) |
| 17 |
7 9 10 15 16
|
syl31anc |
⊢ ( 𝜑 → ( ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) → 𝐴 = ( ( 𝐴 gcd 𝐶 ) ↑ 2 ) ) ) |
| 18 |
6 17
|
mpd |
⊢ ( 𝜑 → 𝐴 = ( ( 𝐴 gcd 𝐶 ) ↑ 2 ) ) |
| 19 |
1
|
nnzd |
⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
| 20 |
|
coprimeprodsq2 |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ) → ( ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) → 𝐵 = ( ( 𝐵 gcd 𝐶 ) ↑ 2 ) ) ) |
| 21 |
19 8 10 15 20
|
syl31anc |
⊢ ( 𝜑 → ( ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) → 𝐵 = ( ( 𝐵 gcd 𝐶 ) ↑ 2 ) ) ) |
| 22 |
6 21
|
mpd |
⊢ ( 𝜑 → 𝐵 = ( ( 𝐵 gcd 𝐶 ) ↑ 2 ) ) |
| 23 |
18 22
|
jca |
⊢ ( 𝜑 → ( 𝐴 = ( ( 𝐴 gcd 𝐶 ) ↑ 2 ) ∧ 𝐵 = ( ( 𝐵 gcd 𝐶 ) ↑ 2 ) ) ) |