Step |
Hyp |
Ref |
Expression |
1 |
|
flt4lem5.1 |
⊢ 𝑀 = ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) + ( √ ‘ ( 𝐶 − 𝐵 ) ) ) / 2 ) |
2 |
|
flt4lem5.2 |
⊢ 𝑁 = ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) − ( √ ‘ ( 𝐶 − 𝐵 ) ) ) / 2 ) |
3 |
|
simp3l |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 𝐴 gcd 𝐵 ) = 1 ) |
4 |
|
simp11 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 𝐴 ∈ ℕ ) |
5 |
|
simp12 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 𝐵 ∈ ℕ ) |
6 |
|
coprmgcdb |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ∀ 𝑖 ∈ ℕ ( ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) → 𝑖 = 1 ) ↔ ( 𝐴 gcd 𝐵 ) = 1 ) ) |
7 |
4 5 6
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ∀ 𝑖 ∈ ℕ ( ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) → 𝑖 = 1 ) ↔ ( 𝐴 gcd 𝐵 ) = 1 ) ) |
8 |
3 7
|
mpbird |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ∀ 𝑖 ∈ ℕ ( ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) → 𝑖 = 1 ) ) |
9 |
|
simplr |
⊢ ( ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁 ) ) → 𝑖 ∈ ℕ ) |
10 |
9
|
nnzd |
⊢ ( ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁 ) ) → 𝑖 ∈ ℤ ) |
11 |
1
|
pythagtriplem11 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 𝑀 ∈ ℕ ) |
12 |
11
|
ad2antrr |
⊢ ( ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁 ) ) → 𝑀 ∈ ℕ ) |
13 |
12
|
nnsqcld |
⊢ ( ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁 ) ) → ( 𝑀 ↑ 2 ) ∈ ℕ ) |
14 |
13
|
nnzd |
⊢ ( ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁 ) ) → ( 𝑀 ↑ 2 ) ∈ ℤ ) |
15 |
2
|
pythagtriplem13 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 𝑁 ∈ ℕ ) |
16 |
15
|
ad2antrr |
⊢ ( ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁 ) ) → 𝑁 ∈ ℕ ) |
17 |
16
|
nnsqcld |
⊢ ( ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁 ) ) → ( 𝑁 ↑ 2 ) ∈ ℕ ) |
18 |
17
|
nnzd |
⊢ ( ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁 ) ) → ( 𝑁 ↑ 2 ) ∈ ℤ ) |
19 |
|
simprl |
⊢ ( ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁 ) ) → 𝑖 ∥ 𝑀 ) |
20 |
12
|
nnzd |
⊢ ( ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁 ) ) → 𝑀 ∈ ℤ ) |
21 |
|
2nn |
⊢ 2 ∈ ℕ |
22 |
21
|
a1i |
⊢ ( ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁 ) ) → 2 ∈ ℕ ) |
23 |
|
dvdsexp2im |
⊢ ( ( 𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 2 ∈ ℕ ) → ( 𝑖 ∥ 𝑀 → 𝑖 ∥ ( 𝑀 ↑ 2 ) ) ) |
24 |
10 20 22 23
|
syl3anc |
⊢ ( ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁 ) ) → ( 𝑖 ∥ 𝑀 → 𝑖 ∥ ( 𝑀 ↑ 2 ) ) ) |
25 |
19 24
|
mpd |
⊢ ( ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁 ) ) → 𝑖 ∥ ( 𝑀 ↑ 2 ) ) |
26 |
|
simprr |
⊢ ( ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁 ) ) → 𝑖 ∥ 𝑁 ) |
27 |
16
|
nnzd |
⊢ ( ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁 ) ) → 𝑁 ∈ ℤ ) |
28 |
|
dvdsexp2im |
⊢ ( ( 𝑖 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ∈ ℕ ) → ( 𝑖 ∥ 𝑁 → 𝑖 ∥ ( 𝑁 ↑ 2 ) ) ) |
29 |
10 27 22 28
|
syl3anc |
⊢ ( ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁 ) ) → ( 𝑖 ∥ 𝑁 → 𝑖 ∥ ( 𝑁 ↑ 2 ) ) ) |
30 |
26 29
|
mpd |
⊢ ( ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁 ) ) → 𝑖 ∥ ( 𝑁 ↑ 2 ) ) |
31 |
10 14 18 25 30
|
dvds2subd |
⊢ ( ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁 ) ) → 𝑖 ∥ ( ( 𝑀 ↑ 2 ) − ( 𝑁 ↑ 2 ) ) ) |
32 |
1 2
|
pythagtriplem15 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 𝐴 = ( ( 𝑀 ↑ 2 ) − ( 𝑁 ↑ 2 ) ) ) |
33 |
32
|
ad2antrr |
⊢ ( ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁 ) ) → 𝐴 = ( ( 𝑀 ↑ 2 ) − ( 𝑁 ↑ 2 ) ) ) |
34 |
31 33
|
breqtrrd |
⊢ ( ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁 ) ) → 𝑖 ∥ 𝐴 ) |
35 |
|
2z |
⊢ 2 ∈ ℤ |
36 |
35
|
a1i |
⊢ ( ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁 ) ) → 2 ∈ ℤ ) |
37 |
12 16
|
nnmulcld |
⊢ ( ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁 ) ) → ( 𝑀 · 𝑁 ) ∈ ℕ ) |
38 |
37
|
nnzd |
⊢ ( ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁 ) ) → ( 𝑀 · 𝑁 ) ∈ ℤ ) |
39 |
10 20 27 26
|
dvdsmultr2d |
⊢ ( ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁 ) ) → 𝑖 ∥ ( 𝑀 · 𝑁 ) ) |
40 |
10 36 38 39
|
dvdsmultr2d |
⊢ ( ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁 ) ) → 𝑖 ∥ ( 2 · ( 𝑀 · 𝑁 ) ) ) |
41 |
1 2
|
pythagtriplem16 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 𝐵 = ( 2 · ( 𝑀 · 𝑁 ) ) ) |
42 |
41
|
ad2antrr |
⊢ ( ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁 ) ) → 𝐵 = ( 2 · ( 𝑀 · 𝑁 ) ) ) |
43 |
40 42
|
breqtrrd |
⊢ ( ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁 ) ) → 𝑖 ∥ 𝐵 ) |
44 |
34 43
|
jca |
⊢ ( ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁 ) ) → ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) |
45 |
44
|
ex |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ 𝑖 ∈ ℕ ) → ( ( 𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁 ) → ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) ) |
46 |
45
|
imim1d |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ 𝑖 ∈ ℕ ) → ( ( ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) → 𝑖 = 1 ) → ( ( 𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁 ) → 𝑖 = 1 ) ) ) |
47 |
46
|
ralimdva |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ∀ 𝑖 ∈ ℕ ( ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) → 𝑖 = 1 ) → ∀ 𝑖 ∈ ℕ ( ( 𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁 ) → 𝑖 = 1 ) ) ) |
48 |
8 47
|
mpd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ∀ 𝑖 ∈ ℕ ( ( 𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁 ) → 𝑖 = 1 ) ) |
49 |
|
coprmgcdb |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ∀ 𝑖 ∈ ℕ ( ( 𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁 ) → 𝑖 = 1 ) ↔ ( 𝑀 gcd 𝑁 ) = 1 ) ) |
50 |
11 15 49
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ∀ 𝑖 ∈ ℕ ( ( 𝑖 ∥ 𝑀 ∧ 𝑖 ∥ 𝑁 ) → 𝑖 = 1 ) ↔ ( 𝑀 gcd 𝑁 ) = 1 ) ) |
51 |
48 50
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 𝑀 gcd 𝑁 ) = 1 ) |