Step |
Hyp |
Ref |
Expression |
1 |
|
flt4lem5.1 |
|- M = ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) |
2 |
|
flt4lem5.2 |
|- N = ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) |
3 |
|
simp3l |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( A gcd B ) = 1 ) |
4 |
|
simp11 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> A e. NN ) |
5 |
|
simp12 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> B e. NN ) |
6 |
|
coprmgcdb |
|- ( ( A e. NN /\ B e. NN ) -> ( A. i e. NN ( ( i || A /\ i || B ) -> i = 1 ) <-> ( A gcd B ) = 1 ) ) |
7 |
4 5 6
|
syl2anc |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( A. i e. NN ( ( i || A /\ i || B ) -> i = 1 ) <-> ( A gcd B ) = 1 ) ) |
8 |
3 7
|
mpbird |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> A. i e. NN ( ( i || A /\ i || B ) -> i = 1 ) ) |
9 |
|
simplr |
|- ( ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ i e. NN ) /\ ( i || M /\ i || N ) ) -> i e. NN ) |
10 |
9
|
nnzd |
|- ( ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ i e. NN ) /\ ( i || M /\ i || N ) ) -> i e. ZZ ) |
11 |
1
|
pythagtriplem11 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> M e. NN ) |
12 |
11
|
ad2antrr |
|- ( ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ i e. NN ) /\ ( i || M /\ i || N ) ) -> M e. NN ) |
13 |
12
|
nnsqcld |
|- ( ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ i e. NN ) /\ ( i || M /\ i || N ) ) -> ( M ^ 2 ) e. NN ) |
14 |
13
|
nnzd |
|- ( ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ i e. NN ) /\ ( i || M /\ i || N ) ) -> ( M ^ 2 ) e. ZZ ) |
15 |
2
|
pythagtriplem13 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> N e. NN ) |
16 |
15
|
ad2antrr |
|- ( ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ i e. NN ) /\ ( i || M /\ i || N ) ) -> N e. NN ) |
17 |
16
|
nnsqcld |
|- ( ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ i e. NN ) /\ ( i || M /\ i || N ) ) -> ( N ^ 2 ) e. NN ) |
18 |
17
|
nnzd |
|- ( ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ i e. NN ) /\ ( i || M /\ i || N ) ) -> ( N ^ 2 ) e. ZZ ) |
19 |
|
simprl |
|- ( ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ i e. NN ) /\ ( i || M /\ i || N ) ) -> i || M ) |
20 |
12
|
nnzd |
|- ( ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ i e. NN ) /\ ( i || M /\ i || N ) ) -> M e. ZZ ) |
21 |
|
2nn |
|- 2 e. NN |
22 |
21
|
a1i |
|- ( ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ i e. NN ) /\ ( i || M /\ i || N ) ) -> 2 e. NN ) |
23 |
|
dvdsexp2im |
|- ( ( i e. ZZ /\ M e. ZZ /\ 2 e. NN ) -> ( i || M -> i || ( M ^ 2 ) ) ) |
24 |
10 20 22 23
|
syl3anc |
|- ( ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ i e. NN ) /\ ( i || M /\ i || N ) ) -> ( i || M -> i || ( M ^ 2 ) ) ) |
25 |
19 24
|
mpd |
|- ( ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ i e. NN ) /\ ( i || M /\ i || N ) ) -> i || ( M ^ 2 ) ) |
26 |
|
simprr |
|- ( ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ i e. NN ) /\ ( i || M /\ i || N ) ) -> i || N ) |
27 |
16
|
nnzd |
|- ( ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ i e. NN ) /\ ( i || M /\ i || N ) ) -> N e. ZZ ) |
28 |
|
dvdsexp2im |
|- ( ( i e. ZZ /\ N e. ZZ /\ 2 e. NN ) -> ( i || N -> i || ( N ^ 2 ) ) ) |
29 |
10 27 22 28
|
syl3anc |
|- ( ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ i e. NN ) /\ ( i || M /\ i || N ) ) -> ( i || N -> i || ( N ^ 2 ) ) ) |
30 |
26 29
|
mpd |
|- ( ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ i e. NN ) /\ ( i || M /\ i || N ) ) -> i || ( N ^ 2 ) ) |
31 |
10 14 18 25 30
|
dvds2subd |
|- ( ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ i e. NN ) /\ ( i || M /\ i || N ) ) -> i || ( ( M ^ 2 ) - ( N ^ 2 ) ) ) |
32 |
1 2
|
pythagtriplem15 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> A = ( ( M ^ 2 ) - ( N ^ 2 ) ) ) |
33 |
32
|
ad2antrr |
|- ( ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ i e. NN ) /\ ( i || M /\ i || N ) ) -> A = ( ( M ^ 2 ) - ( N ^ 2 ) ) ) |
34 |
31 33
|
breqtrrd |
|- ( ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ i e. NN ) /\ ( i || M /\ i || N ) ) -> i || A ) |
35 |
|
2z |
|- 2 e. ZZ |
36 |
35
|
a1i |
|- ( ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ i e. NN ) /\ ( i || M /\ i || N ) ) -> 2 e. ZZ ) |
37 |
12 16
|
nnmulcld |
|- ( ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ i e. NN ) /\ ( i || M /\ i || N ) ) -> ( M x. N ) e. NN ) |
38 |
37
|
nnzd |
|- ( ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ i e. NN ) /\ ( i || M /\ i || N ) ) -> ( M x. N ) e. ZZ ) |
39 |
10 20 27 26
|
dvdsmultr2d |
|- ( ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ i e. NN ) /\ ( i || M /\ i || N ) ) -> i || ( M x. N ) ) |
40 |
10 36 38 39
|
dvdsmultr2d |
|- ( ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ i e. NN ) /\ ( i || M /\ i || N ) ) -> i || ( 2 x. ( M x. N ) ) ) |
41 |
1 2
|
pythagtriplem16 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> B = ( 2 x. ( M x. N ) ) ) |
42 |
41
|
ad2antrr |
|- ( ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ i e. NN ) /\ ( i || M /\ i || N ) ) -> B = ( 2 x. ( M x. N ) ) ) |
43 |
40 42
|
breqtrrd |
|- ( ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ i e. NN ) /\ ( i || M /\ i || N ) ) -> i || B ) |
44 |
34 43
|
jca |
|- ( ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ i e. NN ) /\ ( i || M /\ i || N ) ) -> ( i || A /\ i || B ) ) |
45 |
44
|
ex |
|- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ i e. NN ) -> ( ( i || M /\ i || N ) -> ( i || A /\ i || B ) ) ) |
46 |
45
|
imim1d |
|- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ i e. NN ) -> ( ( ( i || A /\ i || B ) -> i = 1 ) -> ( ( i || M /\ i || N ) -> i = 1 ) ) ) |
47 |
46
|
ralimdva |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( A. i e. NN ( ( i || A /\ i || B ) -> i = 1 ) -> A. i e. NN ( ( i || M /\ i || N ) -> i = 1 ) ) ) |
48 |
8 47
|
mpd |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> A. i e. NN ( ( i || M /\ i || N ) -> i = 1 ) ) |
49 |
|
coprmgcdb |
|- ( ( M e. NN /\ N e. NN ) -> ( A. i e. NN ( ( i || M /\ i || N ) -> i = 1 ) <-> ( M gcd N ) = 1 ) ) |
50 |
11 15 49
|
syl2anc |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( A. i e. NN ( ( i || M /\ i || N ) -> i = 1 ) <-> ( M gcd N ) = 1 ) ) |
51 |
48 50
|
mpbid |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( M gcd N ) = 1 ) |