| Step |
Hyp |
Ref |
Expression |
| 1 |
|
flt4lem5.1 |
|- M = ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) |
| 2 |
|
flt4lem5.2 |
|- N = ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) |
| 3 |
|
simp3l |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( A gcd B ) = 1 ) |
| 4 |
|
simp11 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> A e. NN ) |
| 5 |
|
simp12 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> B e. NN ) |
| 6 |
|
coprmgcdb |
|- ( ( A e. NN /\ B e. NN ) -> ( A. i e. NN ( ( i || A /\ i || B ) -> i = 1 ) <-> ( A gcd B ) = 1 ) ) |
| 7 |
4 5 6
|
syl2anc |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( A. i e. NN ( ( i || A /\ i || B ) -> i = 1 ) <-> ( A gcd B ) = 1 ) ) |
| 8 |
3 7
|
mpbird |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> A. i e. NN ( ( i || A /\ i || B ) -> i = 1 ) ) |
| 9 |
|
simplr |
|- ( ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ i e. NN ) /\ ( i || M /\ i || N ) ) -> i e. NN ) |
| 10 |
9
|
nnzd |
|- ( ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ i e. NN ) /\ ( i || M /\ i || N ) ) -> i e. ZZ ) |
| 11 |
1
|
pythagtriplem11 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> M e. NN ) |
| 12 |
11
|
ad2antrr |
|- ( ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ i e. NN ) /\ ( i || M /\ i || N ) ) -> M e. NN ) |
| 13 |
12
|
nnsqcld |
|- ( ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ i e. NN ) /\ ( i || M /\ i || N ) ) -> ( M ^ 2 ) e. NN ) |
| 14 |
13
|
nnzd |
|- ( ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ i e. NN ) /\ ( i || M /\ i || N ) ) -> ( M ^ 2 ) e. ZZ ) |
| 15 |
2
|
pythagtriplem13 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> N e. NN ) |
| 16 |
15
|
ad2antrr |
|- ( ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ i e. NN ) /\ ( i || M /\ i || N ) ) -> N e. NN ) |
| 17 |
16
|
nnsqcld |
|- ( ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ i e. NN ) /\ ( i || M /\ i || N ) ) -> ( N ^ 2 ) e. NN ) |
| 18 |
17
|
nnzd |
|- ( ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ i e. NN ) /\ ( i || M /\ i || N ) ) -> ( N ^ 2 ) e. ZZ ) |
| 19 |
|
simprl |
|- ( ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ i e. NN ) /\ ( i || M /\ i || N ) ) -> i || M ) |
| 20 |
12
|
nnzd |
|- ( ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ i e. NN ) /\ ( i || M /\ i || N ) ) -> M e. ZZ ) |
| 21 |
|
2nn |
|- 2 e. NN |
| 22 |
21
|
a1i |
|- ( ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ i e. NN ) /\ ( i || M /\ i || N ) ) -> 2 e. NN ) |
| 23 |
|
dvdsexp2im |
|- ( ( i e. ZZ /\ M e. ZZ /\ 2 e. NN ) -> ( i || M -> i || ( M ^ 2 ) ) ) |
| 24 |
10 20 22 23
|
syl3anc |
|- ( ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ i e. NN ) /\ ( i || M /\ i || N ) ) -> ( i || M -> i || ( M ^ 2 ) ) ) |
| 25 |
19 24
|
mpd |
|- ( ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ i e. NN ) /\ ( i || M /\ i || N ) ) -> i || ( M ^ 2 ) ) |
| 26 |
|
simprr |
|- ( ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ i e. NN ) /\ ( i || M /\ i || N ) ) -> i || N ) |
| 27 |
16
|
nnzd |
|- ( ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ i e. NN ) /\ ( i || M /\ i || N ) ) -> N e. ZZ ) |
| 28 |
|
dvdsexp2im |
|- ( ( i e. ZZ /\ N e. ZZ /\ 2 e. NN ) -> ( i || N -> i || ( N ^ 2 ) ) ) |
| 29 |
10 27 22 28
|
syl3anc |
|- ( ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ i e. NN ) /\ ( i || M /\ i || N ) ) -> ( i || N -> i || ( N ^ 2 ) ) ) |
| 30 |
26 29
|
mpd |
|- ( ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ i e. NN ) /\ ( i || M /\ i || N ) ) -> i || ( N ^ 2 ) ) |
| 31 |
10 14 18 25 30
|
dvds2subd |
|- ( ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ i e. NN ) /\ ( i || M /\ i || N ) ) -> i || ( ( M ^ 2 ) - ( N ^ 2 ) ) ) |
| 32 |
1 2
|
pythagtriplem15 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> A = ( ( M ^ 2 ) - ( N ^ 2 ) ) ) |
| 33 |
32
|
ad2antrr |
|- ( ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ i e. NN ) /\ ( i || M /\ i || N ) ) -> A = ( ( M ^ 2 ) - ( N ^ 2 ) ) ) |
| 34 |
31 33
|
breqtrrd |
|- ( ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ i e. NN ) /\ ( i || M /\ i || N ) ) -> i || A ) |
| 35 |
|
2z |
|- 2 e. ZZ |
| 36 |
35
|
a1i |
|- ( ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ i e. NN ) /\ ( i || M /\ i || N ) ) -> 2 e. ZZ ) |
| 37 |
12 16
|
nnmulcld |
|- ( ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ i e. NN ) /\ ( i || M /\ i || N ) ) -> ( M x. N ) e. NN ) |
| 38 |
37
|
nnzd |
|- ( ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ i e. NN ) /\ ( i || M /\ i || N ) ) -> ( M x. N ) e. ZZ ) |
| 39 |
10 20 27 26
|
dvdsmultr2d |
|- ( ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ i e. NN ) /\ ( i || M /\ i || N ) ) -> i || ( M x. N ) ) |
| 40 |
10 36 38 39
|
dvdsmultr2d |
|- ( ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ i e. NN ) /\ ( i || M /\ i || N ) ) -> i || ( 2 x. ( M x. N ) ) ) |
| 41 |
1 2
|
pythagtriplem16 |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> B = ( 2 x. ( M x. N ) ) ) |
| 42 |
41
|
ad2antrr |
|- ( ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ i e. NN ) /\ ( i || M /\ i || N ) ) -> B = ( 2 x. ( M x. N ) ) ) |
| 43 |
40 42
|
breqtrrd |
|- ( ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ i e. NN ) /\ ( i || M /\ i || N ) ) -> i || B ) |
| 44 |
34 43
|
jca |
|- ( ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ i e. NN ) /\ ( i || M /\ i || N ) ) -> ( i || A /\ i || B ) ) |
| 45 |
44
|
ex |
|- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ i e. NN ) -> ( ( i || M /\ i || N ) -> ( i || A /\ i || B ) ) ) |
| 46 |
45
|
imim1d |
|- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ i e. NN ) -> ( ( ( i || A /\ i || B ) -> i = 1 ) -> ( ( i || M /\ i || N ) -> i = 1 ) ) ) |
| 47 |
46
|
ralimdva |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( A. i e. NN ( ( i || A /\ i || B ) -> i = 1 ) -> A. i e. NN ( ( i || M /\ i || N ) -> i = 1 ) ) ) |
| 48 |
8 47
|
mpd |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> A. i e. NN ( ( i || M /\ i || N ) -> i = 1 ) ) |
| 49 |
|
coprmgcdb |
|- ( ( M e. NN /\ N e. NN ) -> ( A. i e. NN ( ( i || M /\ i || N ) -> i = 1 ) <-> ( M gcd N ) = 1 ) ) |
| 50 |
11 15 49
|
syl2anc |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( A. i e. NN ( ( i || M /\ i || N ) -> i = 1 ) <-> ( M gcd N ) = 1 ) ) |
| 51 |
48 50
|
mpbid |
|- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( M gcd N ) = 1 ) |