Step |
Hyp |
Ref |
Expression |
1 |
|
flt4lem5elem.m |
|- ( ph -> M e. NN ) |
2 |
|
flt4lem5elem.r |
|- ( ph -> R e. NN ) |
3 |
|
flt4lem5elem.s |
|- ( ph -> S e. NN ) |
4 |
|
flt4lem5elem.1 |
|- ( ph -> M = ( ( R ^ 2 ) + ( S ^ 2 ) ) ) |
5 |
|
flt4lem5elem.2 |
|- ( ph -> ( R gcd S ) = 1 ) |
6 |
2 3
|
prmdvdsncoprmbd |
|- ( ph -> ( E. p e. Prime ( p || R /\ p || S ) <-> ( R gcd S ) =/= 1 ) ) |
7 |
6
|
necon2bbid |
|- ( ph -> ( ( R gcd S ) = 1 <-> -. E. p e. Prime ( p || R /\ p || S ) ) ) |
8 |
5 7
|
mpbid |
|- ( ph -> -. E. p e. Prime ( p || R /\ p || S ) ) |
9 |
|
simprl |
|- ( ( ( ph /\ p e. Prime ) /\ ( p || R /\ p || M ) ) -> p || R ) |
10 |
|
simplr |
|- ( ( ( ph /\ p e. Prime ) /\ ( p || R /\ p || M ) ) -> p e. Prime ) |
11 |
|
prmz |
|- ( p e. Prime -> p e. ZZ ) |
12 |
10 11
|
syl |
|- ( ( ( ph /\ p e. Prime ) /\ ( p || R /\ p || M ) ) -> p e. ZZ ) |
13 |
1
|
nnzd |
|- ( ph -> M e. ZZ ) |
14 |
13
|
ad2antrr |
|- ( ( ( ph /\ p e. Prime ) /\ ( p || R /\ p || M ) ) -> M e. ZZ ) |
15 |
2
|
nnsqcld |
|- ( ph -> ( R ^ 2 ) e. NN ) |
16 |
15
|
nnzd |
|- ( ph -> ( R ^ 2 ) e. ZZ ) |
17 |
16
|
ad2antrr |
|- ( ( ( ph /\ p e. Prime ) /\ ( p || R /\ p || M ) ) -> ( R ^ 2 ) e. ZZ ) |
18 |
|
simprr |
|- ( ( ( ph /\ p e. Prime ) /\ ( p || R /\ p || M ) ) -> p || M ) |
19 |
2
|
nnzd |
|- ( ph -> R e. ZZ ) |
20 |
19
|
ad2antrr |
|- ( ( ( ph /\ p e. Prime ) /\ ( p || R /\ p || M ) ) -> R e. ZZ ) |
21 |
|
prmdvdssq |
|- ( ( p e. Prime /\ R e. ZZ ) -> ( p || R <-> p || ( R ^ 2 ) ) ) |
22 |
10 20 21
|
syl2anc |
|- ( ( ( ph /\ p e. Prime ) /\ ( p || R /\ p || M ) ) -> ( p || R <-> p || ( R ^ 2 ) ) ) |
23 |
9 22
|
mpbid |
|- ( ( ( ph /\ p e. Prime ) /\ ( p || R /\ p || M ) ) -> p || ( R ^ 2 ) ) |
24 |
12 14 17 18 23
|
dvds2subd |
|- ( ( ( ph /\ p e. Prime ) /\ ( p || R /\ p || M ) ) -> p || ( M - ( R ^ 2 ) ) ) |
25 |
15
|
nncnd |
|- ( ph -> ( R ^ 2 ) e. CC ) |
26 |
25
|
ad2antrr |
|- ( ( ( ph /\ p e. Prime ) /\ ( p || R /\ p || M ) ) -> ( R ^ 2 ) e. CC ) |
27 |
3
|
nnsqcld |
|- ( ph -> ( S ^ 2 ) e. NN ) |
28 |
27
|
nncnd |
|- ( ph -> ( S ^ 2 ) e. CC ) |
29 |
28
|
ad2antrr |
|- ( ( ( ph /\ p e. Prime ) /\ ( p || R /\ p || M ) ) -> ( S ^ 2 ) e. CC ) |
30 |
4
|
ad2antrr |
|- ( ( ( ph /\ p e. Prime ) /\ ( p || R /\ p || M ) ) -> M = ( ( R ^ 2 ) + ( S ^ 2 ) ) ) |
31 |
26 29 30
|
mvrladdd |
|- ( ( ( ph /\ p e. Prime ) /\ ( p || R /\ p || M ) ) -> ( M - ( R ^ 2 ) ) = ( S ^ 2 ) ) |
32 |
24 31
|
breqtrd |
|- ( ( ( ph /\ p e. Prime ) /\ ( p || R /\ p || M ) ) -> p || ( S ^ 2 ) ) |
33 |
3
|
nnzd |
|- ( ph -> S e. ZZ ) |
34 |
33
|
ad2antrr |
|- ( ( ( ph /\ p e. Prime ) /\ ( p || R /\ p || M ) ) -> S e. ZZ ) |
35 |
|
prmdvdssq |
|- ( ( p e. Prime /\ S e. ZZ ) -> ( p || S <-> p || ( S ^ 2 ) ) ) |
36 |
10 34 35
|
syl2anc |
|- ( ( ( ph /\ p e. Prime ) /\ ( p || R /\ p || M ) ) -> ( p || S <-> p || ( S ^ 2 ) ) ) |
37 |
32 36
|
mpbird |
|- ( ( ( ph /\ p e. Prime ) /\ ( p || R /\ p || M ) ) -> p || S ) |
38 |
9 37
|
jca |
|- ( ( ( ph /\ p e. Prime ) /\ ( p || R /\ p || M ) ) -> ( p || R /\ p || S ) ) |
39 |
38
|
ex |
|- ( ( ph /\ p e. Prime ) -> ( ( p || R /\ p || M ) -> ( p || R /\ p || S ) ) ) |
40 |
39
|
reximdva |
|- ( ph -> ( E. p e. Prime ( p || R /\ p || M ) -> E. p e. Prime ( p || R /\ p || S ) ) ) |
41 |
8 40
|
mtod |
|- ( ph -> -. E. p e. Prime ( p || R /\ p || M ) ) |
42 |
2 1
|
prmdvdsncoprmbd |
|- ( ph -> ( E. p e. Prime ( p || R /\ p || M ) <-> ( R gcd M ) =/= 1 ) ) |
43 |
42
|
necon2bbid |
|- ( ph -> ( ( R gcd M ) = 1 <-> -. E. p e. Prime ( p || R /\ p || M ) ) ) |
44 |
41 43
|
mpbird |
|- ( ph -> ( R gcd M ) = 1 ) |
45 |
|
simplr |
|- ( ( ( ph /\ p e. Prime ) /\ ( p || S /\ p || M ) ) -> p e. Prime ) |
46 |
45 11
|
syl |
|- ( ( ( ph /\ p e. Prime ) /\ ( p || S /\ p || M ) ) -> p e. ZZ ) |
47 |
13
|
ad2antrr |
|- ( ( ( ph /\ p e. Prime ) /\ ( p || S /\ p || M ) ) -> M e. ZZ ) |
48 |
27
|
nnzd |
|- ( ph -> ( S ^ 2 ) e. ZZ ) |
49 |
48
|
ad2antrr |
|- ( ( ( ph /\ p e. Prime ) /\ ( p || S /\ p || M ) ) -> ( S ^ 2 ) e. ZZ ) |
50 |
|
simprr |
|- ( ( ( ph /\ p e. Prime ) /\ ( p || S /\ p || M ) ) -> p || M ) |
51 |
|
simprl |
|- ( ( ( ph /\ p e. Prime ) /\ ( p || S /\ p || M ) ) -> p || S ) |
52 |
33
|
ad2antrr |
|- ( ( ( ph /\ p e. Prime ) /\ ( p || S /\ p || M ) ) -> S e. ZZ ) |
53 |
45 52 35
|
syl2anc |
|- ( ( ( ph /\ p e. Prime ) /\ ( p || S /\ p || M ) ) -> ( p || S <-> p || ( S ^ 2 ) ) ) |
54 |
51 53
|
mpbid |
|- ( ( ( ph /\ p e. Prime ) /\ ( p || S /\ p || M ) ) -> p || ( S ^ 2 ) ) |
55 |
46 47 49 50 54
|
dvds2subd |
|- ( ( ( ph /\ p e. Prime ) /\ ( p || S /\ p || M ) ) -> p || ( M - ( S ^ 2 ) ) ) |
56 |
25
|
ad2antrr |
|- ( ( ( ph /\ p e. Prime ) /\ ( p || S /\ p || M ) ) -> ( R ^ 2 ) e. CC ) |
57 |
28
|
ad2antrr |
|- ( ( ( ph /\ p e. Prime ) /\ ( p || S /\ p || M ) ) -> ( S ^ 2 ) e. CC ) |
58 |
4
|
ad2antrr |
|- ( ( ( ph /\ p e. Prime ) /\ ( p || S /\ p || M ) ) -> M = ( ( R ^ 2 ) + ( S ^ 2 ) ) ) |
59 |
56 57 58
|
mvrraddd |
|- ( ( ( ph /\ p e. Prime ) /\ ( p || S /\ p || M ) ) -> ( M - ( S ^ 2 ) ) = ( R ^ 2 ) ) |
60 |
55 59
|
breqtrd |
|- ( ( ( ph /\ p e. Prime ) /\ ( p || S /\ p || M ) ) -> p || ( R ^ 2 ) ) |
61 |
19
|
ad2antrr |
|- ( ( ( ph /\ p e. Prime ) /\ ( p || S /\ p || M ) ) -> R e. ZZ ) |
62 |
45 61 21
|
syl2anc |
|- ( ( ( ph /\ p e. Prime ) /\ ( p || S /\ p || M ) ) -> ( p || R <-> p || ( R ^ 2 ) ) ) |
63 |
60 62
|
mpbird |
|- ( ( ( ph /\ p e. Prime ) /\ ( p || S /\ p || M ) ) -> p || R ) |
64 |
63 51
|
jca |
|- ( ( ( ph /\ p e. Prime ) /\ ( p || S /\ p || M ) ) -> ( p || R /\ p || S ) ) |
65 |
64
|
ex |
|- ( ( ph /\ p e. Prime ) -> ( ( p || S /\ p || M ) -> ( p || R /\ p || S ) ) ) |
66 |
65
|
reximdva |
|- ( ph -> ( E. p e. Prime ( p || S /\ p || M ) -> E. p e. Prime ( p || R /\ p || S ) ) ) |
67 |
8 66
|
mtod |
|- ( ph -> -. E. p e. Prime ( p || S /\ p || M ) ) |
68 |
3 1
|
prmdvdsncoprmbd |
|- ( ph -> ( E. p e. Prime ( p || S /\ p || M ) <-> ( S gcd M ) =/= 1 ) ) |
69 |
68
|
necon2bbid |
|- ( ph -> ( ( S gcd M ) = 1 <-> -. E. p e. Prime ( p || S /\ p || M ) ) ) |
70 |
67 69
|
mpbird |
|- ( ph -> ( S gcd M ) = 1 ) |
71 |
44 70
|
jca |
|- ( ph -> ( ( R gcd M ) = 1 /\ ( S gcd M ) = 1 ) ) |