| Step |
Hyp |
Ref |
Expression |
| 1 |
|
flt4lem5elem.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 2 |
|
flt4lem5elem.r |
⊢ ( 𝜑 → 𝑅 ∈ ℕ ) |
| 3 |
|
flt4lem5elem.s |
⊢ ( 𝜑 → 𝑆 ∈ ℕ ) |
| 4 |
|
flt4lem5elem.1 |
⊢ ( 𝜑 → 𝑀 = ( ( 𝑅 ↑ 2 ) + ( 𝑆 ↑ 2 ) ) ) |
| 5 |
|
flt4lem5elem.2 |
⊢ ( 𝜑 → ( 𝑅 gcd 𝑆 ) = 1 ) |
| 6 |
2 3
|
prmdvdsncoprmbd |
⊢ ( 𝜑 → ( ∃ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑅 ∧ 𝑝 ∥ 𝑆 ) ↔ ( 𝑅 gcd 𝑆 ) ≠ 1 ) ) |
| 7 |
6
|
necon2bbid |
⊢ ( 𝜑 → ( ( 𝑅 gcd 𝑆 ) = 1 ↔ ¬ ∃ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑅 ∧ 𝑝 ∥ 𝑆 ) ) ) |
| 8 |
5 7
|
mpbid |
⊢ ( 𝜑 → ¬ ∃ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑅 ∧ 𝑝 ∥ 𝑆 ) ) |
| 9 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑅 ∧ 𝑝 ∥ 𝑀 ) ) → 𝑝 ∥ 𝑅 ) |
| 10 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑅 ∧ 𝑝 ∥ 𝑀 ) ) → 𝑝 ∈ ℙ ) |
| 11 |
|
prmz |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℤ ) |
| 12 |
10 11
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑅 ∧ 𝑝 ∥ 𝑀 ) ) → 𝑝 ∈ ℤ ) |
| 13 |
1
|
nnzd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 14 |
13
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑅 ∧ 𝑝 ∥ 𝑀 ) ) → 𝑀 ∈ ℤ ) |
| 15 |
2
|
nnsqcld |
⊢ ( 𝜑 → ( 𝑅 ↑ 2 ) ∈ ℕ ) |
| 16 |
15
|
nnzd |
⊢ ( 𝜑 → ( 𝑅 ↑ 2 ) ∈ ℤ ) |
| 17 |
16
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑅 ∧ 𝑝 ∥ 𝑀 ) ) → ( 𝑅 ↑ 2 ) ∈ ℤ ) |
| 18 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑅 ∧ 𝑝 ∥ 𝑀 ) ) → 𝑝 ∥ 𝑀 ) |
| 19 |
2
|
nnzd |
⊢ ( 𝜑 → 𝑅 ∈ ℤ ) |
| 20 |
19
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑅 ∧ 𝑝 ∥ 𝑀 ) ) → 𝑅 ∈ ℤ ) |
| 21 |
|
prmdvdssq |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑅 ∈ ℤ ) → ( 𝑝 ∥ 𝑅 ↔ 𝑝 ∥ ( 𝑅 ↑ 2 ) ) ) |
| 22 |
10 20 21
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑅 ∧ 𝑝 ∥ 𝑀 ) ) → ( 𝑝 ∥ 𝑅 ↔ 𝑝 ∥ ( 𝑅 ↑ 2 ) ) ) |
| 23 |
9 22
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑅 ∧ 𝑝 ∥ 𝑀 ) ) → 𝑝 ∥ ( 𝑅 ↑ 2 ) ) |
| 24 |
12 14 17 18 23
|
dvds2subd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑅 ∧ 𝑝 ∥ 𝑀 ) ) → 𝑝 ∥ ( 𝑀 − ( 𝑅 ↑ 2 ) ) ) |
| 25 |
15
|
nncnd |
⊢ ( 𝜑 → ( 𝑅 ↑ 2 ) ∈ ℂ ) |
| 26 |
25
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑅 ∧ 𝑝 ∥ 𝑀 ) ) → ( 𝑅 ↑ 2 ) ∈ ℂ ) |
| 27 |
3
|
nnsqcld |
⊢ ( 𝜑 → ( 𝑆 ↑ 2 ) ∈ ℕ ) |
| 28 |
27
|
nncnd |
⊢ ( 𝜑 → ( 𝑆 ↑ 2 ) ∈ ℂ ) |
| 29 |
28
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑅 ∧ 𝑝 ∥ 𝑀 ) ) → ( 𝑆 ↑ 2 ) ∈ ℂ ) |
| 30 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑅 ∧ 𝑝 ∥ 𝑀 ) ) → 𝑀 = ( ( 𝑅 ↑ 2 ) + ( 𝑆 ↑ 2 ) ) ) |
| 31 |
26 29 30
|
mvrladdd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑅 ∧ 𝑝 ∥ 𝑀 ) ) → ( 𝑀 − ( 𝑅 ↑ 2 ) ) = ( 𝑆 ↑ 2 ) ) |
| 32 |
24 31
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑅 ∧ 𝑝 ∥ 𝑀 ) ) → 𝑝 ∥ ( 𝑆 ↑ 2 ) ) |
| 33 |
3
|
nnzd |
⊢ ( 𝜑 → 𝑆 ∈ ℤ ) |
| 34 |
33
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑅 ∧ 𝑝 ∥ 𝑀 ) ) → 𝑆 ∈ ℤ ) |
| 35 |
|
prmdvdssq |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑆 ∈ ℤ ) → ( 𝑝 ∥ 𝑆 ↔ 𝑝 ∥ ( 𝑆 ↑ 2 ) ) ) |
| 36 |
10 34 35
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑅 ∧ 𝑝 ∥ 𝑀 ) ) → ( 𝑝 ∥ 𝑆 ↔ 𝑝 ∥ ( 𝑆 ↑ 2 ) ) ) |
| 37 |
32 36
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑅 ∧ 𝑝 ∥ 𝑀 ) ) → 𝑝 ∥ 𝑆 ) |
| 38 |
9 37
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑅 ∧ 𝑝 ∥ 𝑀 ) ) → ( 𝑝 ∥ 𝑅 ∧ 𝑝 ∥ 𝑆 ) ) |
| 39 |
38
|
ex |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 ∥ 𝑅 ∧ 𝑝 ∥ 𝑀 ) → ( 𝑝 ∥ 𝑅 ∧ 𝑝 ∥ 𝑆 ) ) ) |
| 40 |
39
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑅 ∧ 𝑝 ∥ 𝑀 ) → ∃ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑅 ∧ 𝑝 ∥ 𝑆 ) ) ) |
| 41 |
8 40
|
mtod |
⊢ ( 𝜑 → ¬ ∃ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑅 ∧ 𝑝 ∥ 𝑀 ) ) |
| 42 |
2 1
|
prmdvdsncoprmbd |
⊢ ( 𝜑 → ( ∃ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑅 ∧ 𝑝 ∥ 𝑀 ) ↔ ( 𝑅 gcd 𝑀 ) ≠ 1 ) ) |
| 43 |
42
|
necon2bbid |
⊢ ( 𝜑 → ( ( 𝑅 gcd 𝑀 ) = 1 ↔ ¬ ∃ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑅 ∧ 𝑝 ∥ 𝑀 ) ) ) |
| 44 |
41 43
|
mpbird |
⊢ ( 𝜑 → ( 𝑅 gcd 𝑀 ) = 1 ) |
| 45 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑆 ∧ 𝑝 ∥ 𝑀 ) ) → 𝑝 ∈ ℙ ) |
| 46 |
45 11
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑆 ∧ 𝑝 ∥ 𝑀 ) ) → 𝑝 ∈ ℤ ) |
| 47 |
13
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑆 ∧ 𝑝 ∥ 𝑀 ) ) → 𝑀 ∈ ℤ ) |
| 48 |
27
|
nnzd |
⊢ ( 𝜑 → ( 𝑆 ↑ 2 ) ∈ ℤ ) |
| 49 |
48
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑆 ∧ 𝑝 ∥ 𝑀 ) ) → ( 𝑆 ↑ 2 ) ∈ ℤ ) |
| 50 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑆 ∧ 𝑝 ∥ 𝑀 ) ) → 𝑝 ∥ 𝑀 ) |
| 51 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑆 ∧ 𝑝 ∥ 𝑀 ) ) → 𝑝 ∥ 𝑆 ) |
| 52 |
33
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑆 ∧ 𝑝 ∥ 𝑀 ) ) → 𝑆 ∈ ℤ ) |
| 53 |
45 52 35
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑆 ∧ 𝑝 ∥ 𝑀 ) ) → ( 𝑝 ∥ 𝑆 ↔ 𝑝 ∥ ( 𝑆 ↑ 2 ) ) ) |
| 54 |
51 53
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑆 ∧ 𝑝 ∥ 𝑀 ) ) → 𝑝 ∥ ( 𝑆 ↑ 2 ) ) |
| 55 |
46 47 49 50 54
|
dvds2subd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑆 ∧ 𝑝 ∥ 𝑀 ) ) → 𝑝 ∥ ( 𝑀 − ( 𝑆 ↑ 2 ) ) ) |
| 56 |
25
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑆 ∧ 𝑝 ∥ 𝑀 ) ) → ( 𝑅 ↑ 2 ) ∈ ℂ ) |
| 57 |
28
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑆 ∧ 𝑝 ∥ 𝑀 ) ) → ( 𝑆 ↑ 2 ) ∈ ℂ ) |
| 58 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑆 ∧ 𝑝 ∥ 𝑀 ) ) → 𝑀 = ( ( 𝑅 ↑ 2 ) + ( 𝑆 ↑ 2 ) ) ) |
| 59 |
56 57 58
|
mvrraddd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑆 ∧ 𝑝 ∥ 𝑀 ) ) → ( 𝑀 − ( 𝑆 ↑ 2 ) ) = ( 𝑅 ↑ 2 ) ) |
| 60 |
55 59
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑆 ∧ 𝑝 ∥ 𝑀 ) ) → 𝑝 ∥ ( 𝑅 ↑ 2 ) ) |
| 61 |
19
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑆 ∧ 𝑝 ∥ 𝑀 ) ) → 𝑅 ∈ ℤ ) |
| 62 |
45 61 21
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑆 ∧ 𝑝 ∥ 𝑀 ) ) → ( 𝑝 ∥ 𝑅 ↔ 𝑝 ∥ ( 𝑅 ↑ 2 ) ) ) |
| 63 |
60 62
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑆 ∧ 𝑝 ∥ 𝑀 ) ) → 𝑝 ∥ 𝑅 ) |
| 64 |
63 51
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑆 ∧ 𝑝 ∥ 𝑀 ) ) → ( 𝑝 ∥ 𝑅 ∧ 𝑝 ∥ 𝑆 ) ) |
| 65 |
64
|
ex |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 ∥ 𝑆 ∧ 𝑝 ∥ 𝑀 ) → ( 𝑝 ∥ 𝑅 ∧ 𝑝 ∥ 𝑆 ) ) ) |
| 66 |
65
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑆 ∧ 𝑝 ∥ 𝑀 ) → ∃ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑅 ∧ 𝑝 ∥ 𝑆 ) ) ) |
| 67 |
8 66
|
mtod |
⊢ ( 𝜑 → ¬ ∃ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑆 ∧ 𝑝 ∥ 𝑀 ) ) |
| 68 |
3 1
|
prmdvdsncoprmbd |
⊢ ( 𝜑 → ( ∃ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑆 ∧ 𝑝 ∥ 𝑀 ) ↔ ( 𝑆 gcd 𝑀 ) ≠ 1 ) ) |
| 69 |
68
|
necon2bbid |
⊢ ( 𝜑 → ( ( 𝑆 gcd 𝑀 ) = 1 ↔ ¬ ∃ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑆 ∧ 𝑝 ∥ 𝑀 ) ) ) |
| 70 |
67 69
|
mpbird |
⊢ ( 𝜑 → ( 𝑆 gcd 𝑀 ) = 1 ) |
| 71 |
44 70
|
jca |
⊢ ( 𝜑 → ( ( 𝑅 gcd 𝑀 ) = 1 ∧ ( 𝑆 gcd 𝑀 ) = 1 ) ) |