Step |
Hyp |
Ref |
Expression |
1 |
|
flt4lem5elem.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
2 |
|
flt4lem5elem.r |
⊢ ( 𝜑 → 𝑅 ∈ ℕ ) |
3 |
|
flt4lem5elem.s |
⊢ ( 𝜑 → 𝑆 ∈ ℕ ) |
4 |
|
flt4lem5elem.1 |
⊢ ( 𝜑 → 𝑀 = ( ( 𝑅 ↑ 2 ) + ( 𝑆 ↑ 2 ) ) ) |
5 |
|
flt4lem5elem.2 |
⊢ ( 𝜑 → ( 𝑅 gcd 𝑆 ) = 1 ) |
6 |
2 3
|
prmdvdsncoprmbd |
⊢ ( 𝜑 → ( ∃ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑅 ∧ 𝑝 ∥ 𝑆 ) ↔ ( 𝑅 gcd 𝑆 ) ≠ 1 ) ) |
7 |
6
|
necon2bbid |
⊢ ( 𝜑 → ( ( 𝑅 gcd 𝑆 ) = 1 ↔ ¬ ∃ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑅 ∧ 𝑝 ∥ 𝑆 ) ) ) |
8 |
5 7
|
mpbid |
⊢ ( 𝜑 → ¬ ∃ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑅 ∧ 𝑝 ∥ 𝑆 ) ) |
9 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑅 ∧ 𝑝 ∥ 𝑀 ) ) → 𝑝 ∥ 𝑅 ) |
10 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑅 ∧ 𝑝 ∥ 𝑀 ) ) → 𝑝 ∈ ℙ ) |
11 |
|
prmz |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℤ ) |
12 |
10 11
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑅 ∧ 𝑝 ∥ 𝑀 ) ) → 𝑝 ∈ ℤ ) |
13 |
1
|
nnzd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
14 |
13
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑅 ∧ 𝑝 ∥ 𝑀 ) ) → 𝑀 ∈ ℤ ) |
15 |
2
|
nnsqcld |
⊢ ( 𝜑 → ( 𝑅 ↑ 2 ) ∈ ℕ ) |
16 |
15
|
nnzd |
⊢ ( 𝜑 → ( 𝑅 ↑ 2 ) ∈ ℤ ) |
17 |
16
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑅 ∧ 𝑝 ∥ 𝑀 ) ) → ( 𝑅 ↑ 2 ) ∈ ℤ ) |
18 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑅 ∧ 𝑝 ∥ 𝑀 ) ) → 𝑝 ∥ 𝑀 ) |
19 |
2
|
nnzd |
⊢ ( 𝜑 → 𝑅 ∈ ℤ ) |
20 |
19
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑅 ∧ 𝑝 ∥ 𝑀 ) ) → 𝑅 ∈ ℤ ) |
21 |
|
prmdvdssq |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑅 ∈ ℤ ) → ( 𝑝 ∥ 𝑅 ↔ 𝑝 ∥ ( 𝑅 ↑ 2 ) ) ) |
22 |
10 20 21
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑅 ∧ 𝑝 ∥ 𝑀 ) ) → ( 𝑝 ∥ 𝑅 ↔ 𝑝 ∥ ( 𝑅 ↑ 2 ) ) ) |
23 |
9 22
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑅 ∧ 𝑝 ∥ 𝑀 ) ) → 𝑝 ∥ ( 𝑅 ↑ 2 ) ) |
24 |
12 14 17 18 23
|
dvds2subd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑅 ∧ 𝑝 ∥ 𝑀 ) ) → 𝑝 ∥ ( 𝑀 − ( 𝑅 ↑ 2 ) ) ) |
25 |
15
|
nncnd |
⊢ ( 𝜑 → ( 𝑅 ↑ 2 ) ∈ ℂ ) |
26 |
25
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑅 ∧ 𝑝 ∥ 𝑀 ) ) → ( 𝑅 ↑ 2 ) ∈ ℂ ) |
27 |
3
|
nnsqcld |
⊢ ( 𝜑 → ( 𝑆 ↑ 2 ) ∈ ℕ ) |
28 |
27
|
nncnd |
⊢ ( 𝜑 → ( 𝑆 ↑ 2 ) ∈ ℂ ) |
29 |
28
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑅 ∧ 𝑝 ∥ 𝑀 ) ) → ( 𝑆 ↑ 2 ) ∈ ℂ ) |
30 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑅 ∧ 𝑝 ∥ 𝑀 ) ) → 𝑀 = ( ( 𝑅 ↑ 2 ) + ( 𝑆 ↑ 2 ) ) ) |
31 |
26 29 30
|
mvrladdd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑅 ∧ 𝑝 ∥ 𝑀 ) ) → ( 𝑀 − ( 𝑅 ↑ 2 ) ) = ( 𝑆 ↑ 2 ) ) |
32 |
24 31
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑅 ∧ 𝑝 ∥ 𝑀 ) ) → 𝑝 ∥ ( 𝑆 ↑ 2 ) ) |
33 |
3
|
nnzd |
⊢ ( 𝜑 → 𝑆 ∈ ℤ ) |
34 |
33
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑅 ∧ 𝑝 ∥ 𝑀 ) ) → 𝑆 ∈ ℤ ) |
35 |
|
prmdvdssq |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑆 ∈ ℤ ) → ( 𝑝 ∥ 𝑆 ↔ 𝑝 ∥ ( 𝑆 ↑ 2 ) ) ) |
36 |
10 34 35
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑅 ∧ 𝑝 ∥ 𝑀 ) ) → ( 𝑝 ∥ 𝑆 ↔ 𝑝 ∥ ( 𝑆 ↑ 2 ) ) ) |
37 |
32 36
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑅 ∧ 𝑝 ∥ 𝑀 ) ) → 𝑝 ∥ 𝑆 ) |
38 |
9 37
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑅 ∧ 𝑝 ∥ 𝑀 ) ) → ( 𝑝 ∥ 𝑅 ∧ 𝑝 ∥ 𝑆 ) ) |
39 |
38
|
ex |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 ∥ 𝑅 ∧ 𝑝 ∥ 𝑀 ) → ( 𝑝 ∥ 𝑅 ∧ 𝑝 ∥ 𝑆 ) ) ) |
40 |
39
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑅 ∧ 𝑝 ∥ 𝑀 ) → ∃ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑅 ∧ 𝑝 ∥ 𝑆 ) ) ) |
41 |
8 40
|
mtod |
⊢ ( 𝜑 → ¬ ∃ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑅 ∧ 𝑝 ∥ 𝑀 ) ) |
42 |
2 1
|
prmdvdsncoprmbd |
⊢ ( 𝜑 → ( ∃ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑅 ∧ 𝑝 ∥ 𝑀 ) ↔ ( 𝑅 gcd 𝑀 ) ≠ 1 ) ) |
43 |
42
|
necon2bbid |
⊢ ( 𝜑 → ( ( 𝑅 gcd 𝑀 ) = 1 ↔ ¬ ∃ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑅 ∧ 𝑝 ∥ 𝑀 ) ) ) |
44 |
41 43
|
mpbird |
⊢ ( 𝜑 → ( 𝑅 gcd 𝑀 ) = 1 ) |
45 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑆 ∧ 𝑝 ∥ 𝑀 ) ) → 𝑝 ∈ ℙ ) |
46 |
45 11
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑆 ∧ 𝑝 ∥ 𝑀 ) ) → 𝑝 ∈ ℤ ) |
47 |
13
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑆 ∧ 𝑝 ∥ 𝑀 ) ) → 𝑀 ∈ ℤ ) |
48 |
27
|
nnzd |
⊢ ( 𝜑 → ( 𝑆 ↑ 2 ) ∈ ℤ ) |
49 |
48
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑆 ∧ 𝑝 ∥ 𝑀 ) ) → ( 𝑆 ↑ 2 ) ∈ ℤ ) |
50 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑆 ∧ 𝑝 ∥ 𝑀 ) ) → 𝑝 ∥ 𝑀 ) |
51 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑆 ∧ 𝑝 ∥ 𝑀 ) ) → 𝑝 ∥ 𝑆 ) |
52 |
33
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑆 ∧ 𝑝 ∥ 𝑀 ) ) → 𝑆 ∈ ℤ ) |
53 |
45 52 35
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑆 ∧ 𝑝 ∥ 𝑀 ) ) → ( 𝑝 ∥ 𝑆 ↔ 𝑝 ∥ ( 𝑆 ↑ 2 ) ) ) |
54 |
51 53
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑆 ∧ 𝑝 ∥ 𝑀 ) ) → 𝑝 ∥ ( 𝑆 ↑ 2 ) ) |
55 |
46 47 49 50 54
|
dvds2subd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑆 ∧ 𝑝 ∥ 𝑀 ) ) → 𝑝 ∥ ( 𝑀 − ( 𝑆 ↑ 2 ) ) ) |
56 |
25
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑆 ∧ 𝑝 ∥ 𝑀 ) ) → ( 𝑅 ↑ 2 ) ∈ ℂ ) |
57 |
28
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑆 ∧ 𝑝 ∥ 𝑀 ) ) → ( 𝑆 ↑ 2 ) ∈ ℂ ) |
58 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑆 ∧ 𝑝 ∥ 𝑀 ) ) → 𝑀 = ( ( 𝑅 ↑ 2 ) + ( 𝑆 ↑ 2 ) ) ) |
59 |
56 57 58
|
mvrraddd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑆 ∧ 𝑝 ∥ 𝑀 ) ) → ( 𝑀 − ( 𝑆 ↑ 2 ) ) = ( 𝑅 ↑ 2 ) ) |
60 |
55 59
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑆 ∧ 𝑝 ∥ 𝑀 ) ) → 𝑝 ∥ ( 𝑅 ↑ 2 ) ) |
61 |
19
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑆 ∧ 𝑝 ∥ 𝑀 ) ) → 𝑅 ∈ ℤ ) |
62 |
45 61 21
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑆 ∧ 𝑝 ∥ 𝑀 ) ) → ( 𝑝 ∥ 𝑅 ↔ 𝑝 ∥ ( 𝑅 ↑ 2 ) ) ) |
63 |
60 62
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑆 ∧ 𝑝 ∥ 𝑀 ) ) → 𝑝 ∥ 𝑅 ) |
64 |
63 51
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ∥ 𝑆 ∧ 𝑝 ∥ 𝑀 ) ) → ( 𝑝 ∥ 𝑅 ∧ 𝑝 ∥ 𝑆 ) ) |
65 |
64
|
ex |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 ∥ 𝑆 ∧ 𝑝 ∥ 𝑀 ) → ( 𝑝 ∥ 𝑅 ∧ 𝑝 ∥ 𝑆 ) ) ) |
66 |
65
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑆 ∧ 𝑝 ∥ 𝑀 ) → ∃ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑅 ∧ 𝑝 ∥ 𝑆 ) ) ) |
67 |
8 66
|
mtod |
⊢ ( 𝜑 → ¬ ∃ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑆 ∧ 𝑝 ∥ 𝑀 ) ) |
68 |
3 1
|
prmdvdsncoprmbd |
⊢ ( 𝜑 → ( ∃ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑆 ∧ 𝑝 ∥ 𝑀 ) ↔ ( 𝑆 gcd 𝑀 ) ≠ 1 ) ) |
69 |
68
|
necon2bbid |
⊢ ( 𝜑 → ( ( 𝑆 gcd 𝑀 ) = 1 ↔ ¬ ∃ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑆 ∧ 𝑝 ∥ 𝑀 ) ) ) |
70 |
67 69
|
mpbird |
⊢ ( 𝜑 → ( 𝑆 gcd 𝑀 ) = 1 ) |
71 |
44 70
|
jca |
⊢ ( 𝜑 → ( ( 𝑅 gcd 𝑀 ) = 1 ∧ ( 𝑆 gcd 𝑀 ) = 1 ) ) |