| Step |
Hyp |
Ref |
Expression |
| 1 |
|
flt4lem5a.m |
⊢ 𝑀 = ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) |
| 2 |
|
flt4lem5a.n |
⊢ 𝑁 = ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) |
| 3 |
|
flt4lem5a.r |
⊢ 𝑅 = ( ( ( √ ‘ ( 𝑀 + 𝑁 ) ) + ( √ ‘ ( 𝑀 − 𝑁 ) ) ) / 2 ) |
| 4 |
|
flt4lem5a.s |
⊢ 𝑆 = ( ( ( √ ‘ ( 𝑀 + 𝑁 ) ) − ( √ ‘ ( 𝑀 − 𝑁 ) ) ) / 2 ) |
| 5 |
|
flt4lem5a.a |
⊢ ( 𝜑 → 𝐴 ∈ ℕ ) |
| 6 |
|
flt4lem5a.b |
⊢ ( 𝜑 → 𝐵 ∈ ℕ ) |
| 7 |
|
flt4lem5a.c |
⊢ ( 𝜑 → 𝐶 ∈ ℕ ) |
| 8 |
|
flt4lem5a.1 |
⊢ ( 𝜑 → ¬ 2 ∥ 𝐴 ) |
| 9 |
|
flt4lem5a.2 |
⊢ ( 𝜑 → ( 𝐴 gcd 𝐶 ) = 1 ) |
| 10 |
|
flt4lem5a.3 |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 4 ) + ( 𝐵 ↑ 4 ) ) = ( 𝐶 ↑ 2 ) ) |
| 11 |
5
|
nnsqcld |
⊢ ( 𝜑 → ( 𝐴 ↑ 2 ) ∈ ℕ ) |
| 12 |
6
|
nnsqcld |
⊢ ( 𝜑 → ( 𝐵 ↑ 2 ) ∈ ℕ ) |
| 13 |
|
2prm |
⊢ 2 ∈ ℙ |
| 14 |
5
|
nnzd |
⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
| 15 |
|
prmdvdssq |
⊢ ( ( 2 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → ( 2 ∥ 𝐴 ↔ 2 ∥ ( 𝐴 ↑ 2 ) ) ) |
| 16 |
13 14 15
|
sylancr |
⊢ ( 𝜑 → ( 2 ∥ 𝐴 ↔ 2 ∥ ( 𝐴 ↑ 2 ) ) ) |
| 17 |
8 16
|
mtbid |
⊢ ( 𝜑 → ¬ 2 ∥ ( 𝐴 ↑ 2 ) ) |
| 18 |
|
2nn |
⊢ 2 ∈ ℕ |
| 19 |
18
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℕ ) |
| 20 |
|
rplpwr |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ ∧ 2 ∈ ℕ ) → ( ( 𝐴 gcd 𝐶 ) = 1 → ( ( 𝐴 ↑ 2 ) gcd 𝐶 ) = 1 ) ) |
| 21 |
5 7 19 20
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐴 gcd 𝐶 ) = 1 → ( ( 𝐴 ↑ 2 ) gcd 𝐶 ) = 1 ) ) |
| 22 |
9 21
|
mpd |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) gcd 𝐶 ) = 1 ) |
| 23 |
5
|
nncnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 24 |
23
|
flt4lem |
⊢ ( 𝜑 → ( 𝐴 ↑ 4 ) = ( ( 𝐴 ↑ 2 ) ↑ 2 ) ) |
| 25 |
6
|
nncnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 26 |
25
|
flt4lem |
⊢ ( 𝜑 → ( 𝐵 ↑ 4 ) = ( ( 𝐵 ↑ 2 ) ↑ 2 ) ) |
| 27 |
24 26
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 4 ) + ( 𝐵 ↑ 4 ) ) = ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) + ( ( 𝐵 ↑ 2 ) ↑ 2 ) ) ) |
| 28 |
27 10
|
eqtr3d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) + ( ( 𝐵 ↑ 2 ) ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) |
| 29 |
11 12 7 17 22 28
|
flt4lem1 |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) ∈ ℕ ∧ ( 𝐵 ↑ 2 ) ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) + ( ( 𝐵 ↑ 2 ) ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( ( 𝐴 ↑ 2 ) gcd ( 𝐵 ↑ 2 ) ) = 1 ∧ ¬ 2 ∥ ( 𝐴 ↑ 2 ) ) ) ) |
| 30 |
1
|
pythagtriplem11 |
⊢ ( ( ( ( 𝐴 ↑ 2 ) ∈ ℕ ∧ ( 𝐵 ↑ 2 ) ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) + ( ( 𝐵 ↑ 2 ) ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( ( 𝐴 ↑ 2 ) gcd ( 𝐵 ↑ 2 ) ) = 1 ∧ ¬ 2 ∥ ( 𝐴 ↑ 2 ) ) ) → 𝑀 ∈ ℕ ) |
| 31 |
29 30
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 32 |
31
|
nnsqcld |
⊢ ( 𝜑 → ( 𝑀 ↑ 2 ) ∈ ℕ ) |
| 33 |
32
|
nncnd |
⊢ ( 𝜑 → ( 𝑀 ↑ 2 ) ∈ ℂ ) |
| 34 |
2
|
pythagtriplem13 |
⊢ ( ( ( ( 𝐴 ↑ 2 ) ∈ ℕ ∧ ( 𝐵 ↑ 2 ) ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) + ( ( 𝐵 ↑ 2 ) ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( ( 𝐴 ↑ 2 ) gcd ( 𝐵 ↑ 2 ) ) = 1 ∧ ¬ 2 ∥ ( 𝐴 ↑ 2 ) ) ) → 𝑁 ∈ ℕ ) |
| 35 |
29 34
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 36 |
35
|
nnsqcld |
⊢ ( 𝜑 → ( 𝑁 ↑ 2 ) ∈ ℕ ) |
| 37 |
36
|
nncnd |
⊢ ( 𝜑 → ( 𝑁 ↑ 2 ) ∈ ℂ ) |
| 38 |
1 2
|
pythagtriplem15 |
⊢ ( ( ( ( 𝐴 ↑ 2 ) ∈ ℕ ∧ ( 𝐵 ↑ 2 ) ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) + ( ( 𝐵 ↑ 2 ) ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( ( 𝐴 ↑ 2 ) gcd ( 𝐵 ↑ 2 ) ) = 1 ∧ ¬ 2 ∥ ( 𝐴 ↑ 2 ) ) ) → ( 𝐴 ↑ 2 ) = ( ( 𝑀 ↑ 2 ) − ( 𝑁 ↑ 2 ) ) ) |
| 39 |
29 38
|
syl |
⊢ ( 𝜑 → ( 𝐴 ↑ 2 ) = ( ( 𝑀 ↑ 2 ) − ( 𝑁 ↑ 2 ) ) ) |
| 40 |
33 37 39
|
mvrrsubd |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) + ( 𝑁 ↑ 2 ) ) = ( 𝑀 ↑ 2 ) ) |