| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pythagtriplem13.1 |
⊢ 𝑁 = ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) − ( √ ‘ ( 𝐶 − 𝐵 ) ) ) / 2 ) |
| 2 |
|
pythagtriplem9 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( √ ‘ ( 𝐶 + 𝐵 ) ) ∈ ℕ ) |
| 3 |
2
|
nnzd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( √ ‘ ( 𝐶 + 𝐵 ) ) ∈ ℤ ) |
| 4 |
|
simp3r |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ¬ 2 ∥ 𝐴 ) |
| 5 |
|
2z |
⊢ 2 ∈ ℤ |
| 6 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 𝐶 ∈ ℕ ) |
| 7 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 𝐵 ∈ ℕ ) |
| 8 |
6 7
|
nnaddcld |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐶 + 𝐵 ) ∈ ℕ ) |
| 9 |
8
|
nnzd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐶 + 𝐵 ) ∈ ℤ ) |
| 10 |
9
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 𝐶 + 𝐵 ) ∈ ℤ ) |
| 11 |
|
nnz |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℤ ) |
| 12 |
11
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 𝐴 ∈ ℤ ) |
| 13 |
12
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 𝐴 ∈ ℤ ) |
| 14 |
|
dvdsgcdb |
⊢ ( ( 2 ∈ ℤ ∧ ( 𝐶 + 𝐵 ) ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( ( 2 ∥ ( 𝐶 + 𝐵 ) ∧ 2 ∥ 𝐴 ) ↔ 2 ∥ ( ( 𝐶 + 𝐵 ) gcd 𝐴 ) ) ) |
| 15 |
5 10 13 14
|
mp3an2i |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( 2 ∥ ( 𝐶 + 𝐵 ) ∧ 2 ∥ 𝐴 ) ↔ 2 ∥ ( ( 𝐶 + 𝐵 ) gcd 𝐴 ) ) ) |
| 16 |
15
|
biimpar |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ 2 ∥ ( ( 𝐶 + 𝐵 ) gcd 𝐴 ) ) → ( 2 ∥ ( 𝐶 + 𝐵 ) ∧ 2 ∥ 𝐴 ) ) |
| 17 |
16
|
simprd |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ 2 ∥ ( ( 𝐶 + 𝐵 ) gcd 𝐴 ) ) → 2 ∥ 𝐴 ) |
| 18 |
4 17
|
mtand |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ¬ 2 ∥ ( ( 𝐶 + 𝐵 ) gcd 𝐴 ) ) |
| 19 |
|
pythagtriplem7 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( √ ‘ ( 𝐶 + 𝐵 ) ) = ( ( 𝐶 + 𝐵 ) gcd 𝐴 ) ) |
| 20 |
19
|
breq2d |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 2 ∥ ( √ ‘ ( 𝐶 + 𝐵 ) ) ↔ 2 ∥ ( ( 𝐶 + 𝐵 ) gcd 𝐴 ) ) ) |
| 21 |
18 20
|
mtbird |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ¬ 2 ∥ ( √ ‘ ( 𝐶 + 𝐵 ) ) ) |
| 22 |
|
pythagtriplem8 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( √ ‘ ( 𝐶 − 𝐵 ) ) ∈ ℕ ) |
| 23 |
22
|
nnzd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( √ ‘ ( 𝐶 − 𝐵 ) ) ∈ ℤ ) |
| 24 |
|
nnz |
⊢ ( 𝐶 ∈ ℕ → 𝐶 ∈ ℤ ) |
| 25 |
24
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 𝐶 ∈ ℤ ) |
| 26 |
|
nnz |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℤ ) |
| 27 |
26
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 𝐵 ∈ ℤ ) |
| 28 |
25 27
|
zsubcld |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐶 − 𝐵 ) ∈ ℤ ) |
| 29 |
28
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 𝐶 − 𝐵 ) ∈ ℤ ) |
| 30 |
|
dvdsgcdb |
⊢ ( ( 2 ∈ ℤ ∧ ( 𝐶 − 𝐵 ) ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( ( 2 ∥ ( 𝐶 − 𝐵 ) ∧ 2 ∥ 𝐴 ) ↔ 2 ∥ ( ( 𝐶 − 𝐵 ) gcd 𝐴 ) ) ) |
| 31 |
5 29 13 30
|
mp3an2i |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( 2 ∥ ( 𝐶 − 𝐵 ) ∧ 2 ∥ 𝐴 ) ↔ 2 ∥ ( ( 𝐶 − 𝐵 ) gcd 𝐴 ) ) ) |
| 32 |
31
|
biimpar |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ 2 ∥ ( ( 𝐶 − 𝐵 ) gcd 𝐴 ) ) → ( 2 ∥ ( 𝐶 − 𝐵 ) ∧ 2 ∥ 𝐴 ) ) |
| 33 |
32
|
simprd |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ 2 ∥ ( ( 𝐶 − 𝐵 ) gcd 𝐴 ) ) → 2 ∥ 𝐴 ) |
| 34 |
4 33
|
mtand |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ¬ 2 ∥ ( ( 𝐶 − 𝐵 ) gcd 𝐴 ) ) |
| 35 |
|
pythagtriplem6 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( √ ‘ ( 𝐶 − 𝐵 ) ) = ( ( 𝐶 − 𝐵 ) gcd 𝐴 ) ) |
| 36 |
35
|
breq2d |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 2 ∥ ( √ ‘ ( 𝐶 − 𝐵 ) ) ↔ 2 ∥ ( ( 𝐶 − 𝐵 ) gcd 𝐴 ) ) ) |
| 37 |
34 36
|
mtbird |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ¬ 2 ∥ ( √ ‘ ( 𝐶 − 𝐵 ) ) ) |
| 38 |
|
omoe |
⊢ ( ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) ∈ ℤ ∧ ¬ 2 ∥ ( √ ‘ ( 𝐶 + 𝐵 ) ) ) ∧ ( ( √ ‘ ( 𝐶 − 𝐵 ) ) ∈ ℤ ∧ ¬ 2 ∥ ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ) → 2 ∥ ( ( √ ‘ ( 𝐶 + 𝐵 ) ) − ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ) |
| 39 |
3 21 23 37 38
|
syl22anc |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 2 ∥ ( ( √ ‘ ( 𝐶 + 𝐵 ) ) − ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ) |
| 40 |
28
|
zred |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐶 − 𝐵 ) ∈ ℝ ) |
| 41 |
40
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 𝐶 − 𝐵 ) ∈ ℝ ) |
| 42 |
|
simp13 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 𝐶 ∈ ℕ ) |
| 43 |
42
|
nnred |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 𝐶 ∈ ℝ ) |
| 44 |
8
|
nnred |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐶 + 𝐵 ) ∈ ℝ ) |
| 45 |
44
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 𝐶 + 𝐵 ) ∈ ℝ ) |
| 46 |
|
nnrp |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℝ+ ) |
| 47 |
46
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 𝐵 ∈ ℝ+ ) |
| 48 |
47
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 𝐵 ∈ ℝ+ ) |
| 49 |
43 48
|
ltsubrpd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 𝐶 − 𝐵 ) < 𝐶 ) |
| 50 |
|
nngt0 |
⊢ ( 𝐵 ∈ ℕ → 0 < 𝐵 ) |
| 51 |
50
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 0 < 𝐵 ) |
| 52 |
51
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 0 < 𝐵 ) |
| 53 |
|
simp12 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 𝐵 ∈ ℕ ) |
| 54 |
53
|
nnred |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 𝐵 ∈ ℝ ) |
| 55 |
54 43
|
ltaddposd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 0 < 𝐵 ↔ 𝐶 < ( 𝐶 + 𝐵 ) ) ) |
| 56 |
52 55
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 𝐶 < ( 𝐶 + 𝐵 ) ) |
| 57 |
41 43 45 49 56
|
lttrd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 𝐶 − 𝐵 ) < ( 𝐶 + 𝐵 ) ) |
| 58 |
|
pythagtriplem10 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) → 0 < ( 𝐶 − 𝐵 ) ) |
| 59 |
58
|
3adant3 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 0 < ( 𝐶 − 𝐵 ) ) |
| 60 |
|
0re |
⊢ 0 ∈ ℝ |
| 61 |
|
ltle |
⊢ ( ( 0 ∈ ℝ ∧ ( 𝐶 − 𝐵 ) ∈ ℝ ) → ( 0 < ( 𝐶 − 𝐵 ) → 0 ≤ ( 𝐶 − 𝐵 ) ) ) |
| 62 |
60 61
|
mpan |
⊢ ( ( 𝐶 − 𝐵 ) ∈ ℝ → ( 0 < ( 𝐶 − 𝐵 ) → 0 ≤ ( 𝐶 − 𝐵 ) ) ) |
| 63 |
41 59 62
|
sylc |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 0 ≤ ( 𝐶 − 𝐵 ) ) |
| 64 |
|
nngt0 |
⊢ ( 𝐶 ∈ ℕ → 0 < 𝐶 ) |
| 65 |
64
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 0 < 𝐶 ) |
| 66 |
65
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 0 < 𝐶 ) |
| 67 |
43 54 66 52
|
addgt0d |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 0 < ( 𝐶 + 𝐵 ) ) |
| 68 |
|
ltle |
⊢ ( ( 0 ∈ ℝ ∧ ( 𝐶 + 𝐵 ) ∈ ℝ ) → ( 0 < ( 𝐶 + 𝐵 ) → 0 ≤ ( 𝐶 + 𝐵 ) ) ) |
| 69 |
60 68
|
mpan |
⊢ ( ( 𝐶 + 𝐵 ) ∈ ℝ → ( 0 < ( 𝐶 + 𝐵 ) → 0 ≤ ( 𝐶 + 𝐵 ) ) ) |
| 70 |
45 67 69
|
sylc |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 0 ≤ ( 𝐶 + 𝐵 ) ) |
| 71 |
41 63 45 70
|
sqrtltd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( 𝐶 − 𝐵 ) < ( 𝐶 + 𝐵 ) ↔ ( √ ‘ ( 𝐶 − 𝐵 ) ) < ( √ ‘ ( 𝐶 + 𝐵 ) ) ) ) |
| 72 |
57 71
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( √ ‘ ( 𝐶 − 𝐵 ) ) < ( √ ‘ ( 𝐶 + 𝐵 ) ) ) |
| 73 |
|
nnsub |
⊢ ( ( ( √ ‘ ( 𝐶 − 𝐵 ) ) ∈ ℕ ∧ ( √ ‘ ( 𝐶 + 𝐵 ) ) ∈ ℕ ) → ( ( √ ‘ ( 𝐶 − 𝐵 ) ) < ( √ ‘ ( 𝐶 + 𝐵 ) ) ↔ ( ( √ ‘ ( 𝐶 + 𝐵 ) ) − ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ∈ ℕ ) ) |
| 74 |
22 2 73
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( √ ‘ ( 𝐶 − 𝐵 ) ) < ( √ ‘ ( 𝐶 + 𝐵 ) ) ↔ ( ( √ ‘ ( 𝐶 + 𝐵 ) ) − ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ∈ ℕ ) ) |
| 75 |
72 74
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( √ ‘ ( 𝐶 + 𝐵 ) ) − ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ∈ ℕ ) |
| 76 |
75
|
nnzd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( √ ‘ ( 𝐶 + 𝐵 ) ) − ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ∈ ℤ ) |
| 77 |
|
evend2 |
⊢ ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) − ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ∈ ℤ → ( 2 ∥ ( ( √ ‘ ( 𝐶 + 𝐵 ) ) − ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ↔ ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) − ( √ ‘ ( 𝐶 − 𝐵 ) ) ) / 2 ) ∈ ℤ ) ) |
| 78 |
76 77
|
syl |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 2 ∥ ( ( √ ‘ ( 𝐶 + 𝐵 ) ) − ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ↔ ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) − ( √ ‘ ( 𝐶 − 𝐵 ) ) ) / 2 ) ∈ ℤ ) ) |
| 79 |
39 78
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) − ( √ ‘ ( 𝐶 − 𝐵 ) ) ) / 2 ) ∈ ℤ ) |
| 80 |
75
|
nngt0d |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 0 < ( ( √ ‘ ( 𝐶 + 𝐵 ) ) − ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ) |
| 81 |
75
|
nnred |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( √ ‘ ( 𝐶 + 𝐵 ) ) − ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ∈ ℝ ) |
| 82 |
|
halfpos2 |
⊢ ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) − ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ∈ ℝ → ( 0 < ( ( √ ‘ ( 𝐶 + 𝐵 ) ) − ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ↔ 0 < ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) − ( √ ‘ ( 𝐶 − 𝐵 ) ) ) / 2 ) ) ) |
| 83 |
81 82
|
syl |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 0 < ( ( √ ‘ ( 𝐶 + 𝐵 ) ) − ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ↔ 0 < ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) − ( √ ‘ ( 𝐶 − 𝐵 ) ) ) / 2 ) ) ) |
| 84 |
80 83
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 0 < ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) − ( √ ‘ ( 𝐶 − 𝐵 ) ) ) / 2 ) ) |
| 85 |
|
elnnz |
⊢ ( ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) − ( √ ‘ ( 𝐶 − 𝐵 ) ) ) / 2 ) ∈ ℕ ↔ ( ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) − ( √ ‘ ( 𝐶 − 𝐵 ) ) ) / 2 ) ∈ ℤ ∧ 0 < ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) − ( √ ‘ ( 𝐶 − 𝐵 ) ) ) / 2 ) ) ) |
| 86 |
79 84 85
|
sylanbrc |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) − ( √ ‘ ( 𝐶 − 𝐵 ) ) ) / 2 ) ∈ ℕ ) |
| 87 |
1 86
|
eqeltrid |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 𝑁 ∈ ℕ ) |