| Step |
Hyp |
Ref |
Expression |
| 1 |
|
flt4lem1.a |
⊢ ( 𝜑 → 𝐴 ∈ ℕ ) |
| 2 |
|
flt4lem1.b |
⊢ ( 𝜑 → 𝐵 ∈ ℕ ) |
| 3 |
|
flt4lem1.c |
⊢ ( 𝜑 → 𝐶 ∈ ℕ ) |
| 4 |
|
flt4lem1.1 |
⊢ ( 𝜑 → ¬ 2 ∥ 𝐴 ) |
| 5 |
|
flt4lem1.2 |
⊢ ( 𝜑 → ( 𝐴 gcd 𝐶 ) = 1 ) |
| 6 |
|
flt4lem1.3 |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) |
| 7 |
1 2 3
|
3jca |
⊢ ( 𝜑 → ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ) |
| 8 |
1 2 3 5 6
|
fltabcoprm |
⊢ ( 𝜑 → ( 𝐴 gcd 𝐵 ) = 1 ) |
| 9 |
8 4
|
jca |
⊢ ( 𝜑 → ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) |
| 10 |
7 6 9
|
3jca |
⊢ ( 𝜑 → ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ) |