Step |
Hyp |
Ref |
Expression |
1 |
|
fltabcoprm.a |
⊢ ( 𝜑 → 𝐴 ∈ ℕ ) |
2 |
|
fltabcoprm.b |
⊢ ( 𝜑 → 𝐵 ∈ ℕ ) |
3 |
|
fltabcoprm.c |
⊢ ( 𝜑 → 𝐶 ∈ ℕ ) |
4 |
|
fltabcoprm.2 |
⊢ ( 𝜑 → ( 𝐴 gcd 𝐶 ) = 1 ) |
5 |
|
fltabcoprm.3 |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) |
6 |
|
coprmgcdb |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ∀ 𝑖 ∈ ℕ ( ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐶 ) → 𝑖 = 1 ) ↔ ( 𝐴 gcd 𝐶 ) = 1 ) ) |
7 |
1 3 6
|
syl2anc |
⊢ ( 𝜑 → ( ∀ 𝑖 ∈ ℕ ( ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐶 ) → 𝑖 = 1 ) ↔ ( 𝐴 gcd 𝐶 ) = 1 ) ) |
8 |
4 7
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ℕ ( ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐶 ) → 𝑖 = 1 ) ) |
9 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) → 𝑖 ∥ 𝐴 ) |
10 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) → 𝑖 ∈ ℕ ) |
11 |
10
|
nnsqcld |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) → ( 𝑖 ↑ 2 ) ∈ ℕ ) |
12 |
11
|
nnzd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) → ( 𝑖 ↑ 2 ) ∈ ℤ ) |
13 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) → 𝐴 ∈ ℕ ) |
14 |
13
|
nnsqcld |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) → ( 𝐴 ↑ 2 ) ∈ ℕ ) |
15 |
14
|
nnzd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) → ( 𝐴 ↑ 2 ) ∈ ℤ ) |
16 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) → 𝐵 ∈ ℕ ) |
17 |
16
|
nnsqcld |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) → ( 𝐵 ↑ 2 ) ∈ ℕ ) |
18 |
17
|
nnzd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) → ( 𝐵 ↑ 2 ) ∈ ℤ ) |
19 |
|
dvdssqlem |
⊢ ( ( 𝑖 ∈ ℕ ∧ 𝐴 ∈ ℕ ) → ( 𝑖 ∥ 𝐴 ↔ ( 𝑖 ↑ 2 ) ∥ ( 𝐴 ↑ 2 ) ) ) |
20 |
10 13 19
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) → ( 𝑖 ∥ 𝐴 ↔ ( 𝑖 ↑ 2 ) ∥ ( 𝐴 ↑ 2 ) ) ) |
21 |
9 20
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) → ( 𝑖 ↑ 2 ) ∥ ( 𝐴 ↑ 2 ) ) |
22 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) → 𝑖 ∥ 𝐵 ) |
23 |
|
dvdssqlem |
⊢ ( ( 𝑖 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝑖 ∥ 𝐵 ↔ ( 𝑖 ↑ 2 ) ∥ ( 𝐵 ↑ 2 ) ) ) |
24 |
10 16 23
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) → ( 𝑖 ∥ 𝐵 ↔ ( 𝑖 ↑ 2 ) ∥ ( 𝐵 ↑ 2 ) ) ) |
25 |
22 24
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) → ( 𝑖 ↑ 2 ) ∥ ( 𝐵 ↑ 2 ) ) |
26 |
12 15 18 21 25
|
dvds2addd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) → ( 𝑖 ↑ 2 ) ∥ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) |
27 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) |
28 |
26 27
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) → ( 𝑖 ↑ 2 ) ∥ ( 𝐶 ↑ 2 ) ) |
29 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) → 𝐶 ∈ ℕ ) |
30 |
|
dvdssqlem |
⊢ ( ( 𝑖 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝑖 ∥ 𝐶 ↔ ( 𝑖 ↑ 2 ) ∥ ( 𝐶 ↑ 2 ) ) ) |
31 |
10 29 30
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) → ( 𝑖 ∥ 𝐶 ↔ ( 𝑖 ↑ 2 ) ∥ ( 𝐶 ↑ 2 ) ) ) |
32 |
28 31
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) → 𝑖 ∥ 𝐶 ) |
33 |
9 32
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) → ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐶 ) ) |
34 |
33
|
ex |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) → ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐶 ) ) ) |
35 |
34
|
imim1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( ( ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐶 ) → 𝑖 = 1 ) → ( ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) → 𝑖 = 1 ) ) ) |
36 |
35
|
ralimdva |
⊢ ( 𝜑 → ( ∀ 𝑖 ∈ ℕ ( ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐶 ) → 𝑖 = 1 ) → ∀ 𝑖 ∈ ℕ ( ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) → 𝑖 = 1 ) ) ) |
37 |
8 36
|
mpd |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ℕ ( ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) → 𝑖 = 1 ) ) |
38 |
|
coprmgcdb |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ∀ 𝑖 ∈ ℕ ( ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) → 𝑖 = 1 ) ↔ ( 𝐴 gcd 𝐵 ) = 1 ) ) |
39 |
1 2 38
|
syl2anc |
⊢ ( 𝜑 → ( ∀ 𝑖 ∈ ℕ ( ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) → 𝑖 = 1 ) ↔ ( 𝐴 gcd 𝐵 ) = 1 ) ) |
40 |
37 39
|
mpbid |
⊢ ( 𝜑 → ( 𝐴 gcd 𝐵 ) = 1 ) |