Step |
Hyp |
Ref |
Expression |
1 |
|
infdesc.x |
⊢ ( 𝑦 = 𝑥 → ( 𝜓 ↔ 𝜒 ) ) |
2 |
|
infdesc.z |
⊢ ( 𝑦 = 𝑧 → ( 𝜓 ↔ 𝜃 ) ) |
3 |
|
infdesc.s |
⊢ ( 𝜑 → 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
4 |
|
infdesc.1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝜒 ) ) → ∃ 𝑧 ∈ 𝑆 ( 𝜃 ∧ 𝑧 < 𝑥 ) ) |
5 |
|
df-ne |
⊢ ( { 𝑦 ∈ 𝑆 ∣ 𝜓 } ≠ ∅ ↔ ¬ { 𝑦 ∈ 𝑆 ∣ 𝜓 } = ∅ ) |
6 |
|
ssrab2 |
⊢ { 𝑦 ∈ 𝑆 ∣ 𝜓 } ⊆ 𝑆 |
7 |
6 3
|
sstrid |
⊢ ( 𝜑 → { 𝑦 ∈ 𝑆 ∣ 𝜓 } ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
8 |
|
uzwo |
⊢ ( ( { 𝑦 ∈ 𝑆 ∣ 𝜓 } ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ { 𝑦 ∈ 𝑆 ∣ 𝜓 } ≠ ∅ ) → ∃ 𝑥 ∈ { 𝑦 ∈ 𝑆 ∣ 𝜓 } ∀ 𝑧 ∈ { 𝑦 ∈ 𝑆 ∣ 𝜓 } 𝑥 ≤ 𝑧 ) |
9 |
7 8
|
sylan |
⊢ ( ( 𝜑 ∧ { 𝑦 ∈ 𝑆 ∣ 𝜓 } ≠ ∅ ) → ∃ 𝑥 ∈ { 𝑦 ∈ 𝑆 ∣ 𝜓 } ∀ 𝑧 ∈ { 𝑦 ∈ 𝑆 ∣ 𝜓 } 𝑥 ≤ 𝑧 ) |
10 |
1
|
elrab |
⊢ ( 𝑥 ∈ { 𝑦 ∈ 𝑆 ∣ 𝜓 } ↔ ( 𝑥 ∈ 𝑆 ∧ 𝜒 ) ) |
11 |
|
uzssre |
⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℝ |
12 |
3 11
|
sstrdi |
⊢ ( 𝜑 → 𝑆 ⊆ ℝ ) |
13 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝑆 ⊆ ℝ ) |
14 |
13
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝑆 ) → 𝑧 ∈ ℝ ) |
15 |
12
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ ℝ ) |
16 |
15
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝑆 ) → 𝑥 ∈ ℝ ) |
17 |
14 16
|
ltnled |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝑧 < 𝑥 ↔ ¬ 𝑥 ≤ 𝑧 ) ) |
18 |
17
|
anbi2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝜃 ∧ 𝑧 < 𝑥 ) ↔ ( 𝜃 ∧ ¬ 𝑥 ≤ 𝑧 ) ) ) |
19 |
18
|
rexbidva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( ∃ 𝑧 ∈ 𝑆 ( 𝜃 ∧ 𝑧 < 𝑥 ) ↔ ∃ 𝑧 ∈ 𝑆 ( 𝜃 ∧ ¬ 𝑥 ≤ 𝑧 ) ) ) |
20 |
19
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝜒 ) ) → ( ∃ 𝑧 ∈ 𝑆 ( 𝜃 ∧ 𝑧 < 𝑥 ) ↔ ∃ 𝑧 ∈ 𝑆 ( 𝜃 ∧ ¬ 𝑥 ≤ 𝑧 ) ) ) |
21 |
4 20
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝜒 ) ) → ∃ 𝑧 ∈ 𝑆 ( 𝜃 ∧ ¬ 𝑥 ≤ 𝑧 ) ) |
22 |
10 21
|
sylan2b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑦 ∈ 𝑆 ∣ 𝜓 } ) → ∃ 𝑧 ∈ 𝑆 ( 𝜃 ∧ ¬ 𝑥 ≤ 𝑧 ) ) |
23 |
2
|
rexrab |
⊢ ( ∃ 𝑧 ∈ { 𝑦 ∈ 𝑆 ∣ 𝜓 } ¬ 𝑥 ≤ 𝑧 ↔ ∃ 𝑧 ∈ 𝑆 ( 𝜃 ∧ ¬ 𝑥 ≤ 𝑧 ) ) |
24 |
22 23
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑦 ∈ 𝑆 ∣ 𝜓 } ) → ∃ 𝑧 ∈ { 𝑦 ∈ 𝑆 ∣ 𝜓 } ¬ 𝑥 ≤ 𝑧 ) |
25 |
24
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ { 𝑦 ∈ 𝑆 ∣ 𝜓 } ∃ 𝑧 ∈ { 𝑦 ∈ 𝑆 ∣ 𝜓 } ¬ 𝑥 ≤ 𝑧 ) |
26 |
|
rexnal |
⊢ ( ∃ 𝑧 ∈ { 𝑦 ∈ 𝑆 ∣ 𝜓 } ¬ 𝑥 ≤ 𝑧 ↔ ¬ ∀ 𝑧 ∈ { 𝑦 ∈ 𝑆 ∣ 𝜓 } 𝑥 ≤ 𝑧 ) |
27 |
26
|
ralbii |
⊢ ( ∀ 𝑥 ∈ { 𝑦 ∈ 𝑆 ∣ 𝜓 } ∃ 𝑧 ∈ { 𝑦 ∈ 𝑆 ∣ 𝜓 } ¬ 𝑥 ≤ 𝑧 ↔ ∀ 𝑥 ∈ { 𝑦 ∈ 𝑆 ∣ 𝜓 } ¬ ∀ 𝑧 ∈ { 𝑦 ∈ 𝑆 ∣ 𝜓 } 𝑥 ≤ 𝑧 ) |
28 |
|
ralnex |
⊢ ( ∀ 𝑥 ∈ { 𝑦 ∈ 𝑆 ∣ 𝜓 } ¬ ∀ 𝑧 ∈ { 𝑦 ∈ 𝑆 ∣ 𝜓 } 𝑥 ≤ 𝑧 ↔ ¬ ∃ 𝑥 ∈ { 𝑦 ∈ 𝑆 ∣ 𝜓 } ∀ 𝑧 ∈ { 𝑦 ∈ 𝑆 ∣ 𝜓 } 𝑥 ≤ 𝑧 ) |
29 |
27 28
|
bitri |
⊢ ( ∀ 𝑥 ∈ { 𝑦 ∈ 𝑆 ∣ 𝜓 } ∃ 𝑧 ∈ { 𝑦 ∈ 𝑆 ∣ 𝜓 } ¬ 𝑥 ≤ 𝑧 ↔ ¬ ∃ 𝑥 ∈ { 𝑦 ∈ 𝑆 ∣ 𝜓 } ∀ 𝑧 ∈ { 𝑦 ∈ 𝑆 ∣ 𝜓 } 𝑥 ≤ 𝑧 ) |
30 |
25 29
|
sylib |
⊢ ( 𝜑 → ¬ ∃ 𝑥 ∈ { 𝑦 ∈ 𝑆 ∣ 𝜓 } ∀ 𝑧 ∈ { 𝑦 ∈ 𝑆 ∣ 𝜓 } 𝑥 ≤ 𝑧 ) |
31 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ { 𝑦 ∈ 𝑆 ∣ 𝜓 } ≠ ∅ ) → ¬ ∃ 𝑥 ∈ { 𝑦 ∈ 𝑆 ∣ 𝜓 } ∀ 𝑧 ∈ { 𝑦 ∈ 𝑆 ∣ 𝜓 } 𝑥 ≤ 𝑧 ) |
32 |
9 31
|
pm2.21dd |
⊢ ( ( 𝜑 ∧ { 𝑦 ∈ 𝑆 ∣ 𝜓 } ≠ ∅ ) → { 𝑦 ∈ 𝑆 ∣ 𝜓 } = ∅ ) |
33 |
5 32
|
sylan2br |
⊢ ( ( 𝜑 ∧ ¬ { 𝑦 ∈ 𝑆 ∣ 𝜓 } = ∅ ) → { 𝑦 ∈ 𝑆 ∣ 𝜓 } = ∅ ) |
34 |
33
|
pm2.18da |
⊢ ( 𝜑 → { 𝑦 ∈ 𝑆 ∣ 𝜓 } = ∅ ) |