Step |
Hyp |
Ref |
Expression |
1 |
|
fltne.a |
⊢ ( 𝜑 → 𝐴 ∈ ℕ ) |
2 |
|
fltne.b |
⊢ ( 𝜑 → 𝐵 ∈ ℕ ) |
3 |
|
fltne.c |
⊢ ( 𝜑 → 𝐶 ∈ ℕ ) |
4 |
|
fltne.n |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) |
5 |
|
fltne.1 |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 𝑁 ) + ( 𝐵 ↑ 𝑁 ) ) = ( 𝐶 ↑ 𝑁 ) ) |
6 |
|
2prm |
⊢ 2 ∈ ℙ |
7 |
|
rtprmirr |
⊢ ( ( 2 ∈ ℙ ∧ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) → ( 2 ↑𝑐 ( 1 / 𝑁 ) ) ∈ ( ℝ ∖ ℚ ) ) |
8 |
6 4 7
|
sylancr |
⊢ ( 𝜑 → ( 2 ↑𝑐 ( 1 / 𝑁 ) ) ∈ ( ℝ ∖ ℚ ) ) |
9 |
8
|
eldifbd |
⊢ ( 𝜑 → ¬ ( 2 ↑𝑐 ( 1 / 𝑁 ) ) ∈ ℚ ) |
10 |
3
|
nnzd |
⊢ ( 𝜑 → 𝐶 ∈ ℤ ) |
11 |
|
znq |
⊢ ( ( 𝐶 ∈ ℤ ∧ 𝐴 ∈ ℕ ) → ( 𝐶 / 𝐴 ) ∈ ℚ ) |
12 |
10 1 11
|
syl2anc |
⊢ ( 𝜑 → ( 𝐶 / 𝐴 ) ∈ ℚ ) |
13 |
|
eleq1a |
⊢ ( ( 𝐶 / 𝐴 ) ∈ ℚ → ( ( 2 ↑𝑐 ( 1 / 𝑁 ) ) = ( 𝐶 / 𝐴 ) → ( 2 ↑𝑐 ( 1 / 𝑁 ) ) ∈ ℚ ) ) |
14 |
12 13
|
syl |
⊢ ( 𝜑 → ( ( 2 ↑𝑐 ( 1 / 𝑁 ) ) = ( 𝐶 / 𝐴 ) → ( 2 ↑𝑐 ( 1 / 𝑁 ) ) ∈ ℚ ) ) |
15 |
14
|
necon3bd |
⊢ ( 𝜑 → ( ¬ ( 2 ↑𝑐 ( 1 / 𝑁 ) ) ∈ ℚ → ( 2 ↑𝑐 ( 1 / 𝑁 ) ) ≠ ( 𝐶 / 𝐴 ) ) ) |
16 |
9 15
|
mpd |
⊢ ( 𝜑 → ( 2 ↑𝑐 ( 1 / 𝑁 ) ) ≠ ( 𝐶 / 𝐴 ) ) |
17 |
|
2rp |
⊢ 2 ∈ ℝ+ |
18 |
17
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ+ ) |
19 |
|
eluz2nn |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 𝑁 ∈ ℕ ) |
20 |
4 19
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
21 |
20
|
nnrecred |
⊢ ( 𝜑 → ( 1 / 𝑁 ) ∈ ℝ ) |
22 |
18 21
|
rpcxpcld |
⊢ ( 𝜑 → ( 2 ↑𝑐 ( 1 / 𝑁 ) ) ∈ ℝ+ ) |
23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → ( 2 ↑𝑐 ( 1 / 𝑁 ) ) ∈ ℝ+ ) |
24 |
3
|
nnrpd |
⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) |
25 |
1
|
nnrpd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) |
26 |
24 25
|
rpdivcld |
⊢ ( 𝜑 → ( 𝐶 / 𝐴 ) ∈ ℝ+ ) |
27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → ( 𝐶 / 𝐴 ) ∈ ℝ+ ) |
28 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 𝑁 ∈ ℕ ) |
29 |
20
|
nnnn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
30 |
1 29
|
nnexpcld |
⊢ ( 𝜑 → ( 𝐴 ↑ 𝑁 ) ∈ ℕ ) |
31 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → ( 𝐴 ↑ 𝑁 ) ∈ ℕ ) |
32 |
31
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → ( 𝐴 ↑ 𝑁 ) ∈ ℂ ) |
33 |
|
2cnd |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 2 ∈ ℂ ) |
34 |
31
|
nnne0d |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → ( 𝐴 ↑ 𝑁 ) ≠ 0 ) |
35 |
30
|
nncnd |
⊢ ( 𝜑 → ( 𝐴 ↑ 𝑁 ) ∈ ℂ ) |
36 |
35
|
times2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 𝑁 ) · 2 ) = ( ( 𝐴 ↑ 𝑁 ) + ( 𝐴 ↑ 𝑁 ) ) ) |
37 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → ( ( 𝐴 ↑ 𝑁 ) · 2 ) = ( ( 𝐴 ↑ 𝑁 ) + ( 𝐴 ↑ 𝑁 ) ) ) |
38 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 𝐴 = 𝐵 ) |
39 |
38
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → ( 𝐴 ↑ 𝑁 ) = ( 𝐵 ↑ 𝑁 ) ) |
40 |
39
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → ( ( 𝐴 ↑ 𝑁 ) + ( 𝐴 ↑ 𝑁 ) ) = ( ( 𝐴 ↑ 𝑁 ) + ( 𝐵 ↑ 𝑁 ) ) ) |
41 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → ( ( 𝐴 ↑ 𝑁 ) + ( 𝐵 ↑ 𝑁 ) ) = ( 𝐶 ↑ 𝑁 ) ) |
42 |
37 40 41
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → ( ( 𝐴 ↑ 𝑁 ) · 2 ) = ( 𝐶 ↑ 𝑁 ) ) |
43 |
32 33 34 42
|
mvllmuld |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 2 = ( ( 𝐶 ↑ 𝑁 ) / ( 𝐴 ↑ 𝑁 ) ) ) |
44 |
|
2cn |
⊢ 2 ∈ ℂ |
45 |
|
cxproot |
⊢ ( ( 2 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( ( 2 ↑𝑐 ( 1 / 𝑁 ) ) ↑ 𝑁 ) = 2 ) |
46 |
44 20 45
|
sylancr |
⊢ ( 𝜑 → ( ( 2 ↑𝑐 ( 1 / 𝑁 ) ) ↑ 𝑁 ) = 2 ) |
47 |
46
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → ( ( 2 ↑𝑐 ( 1 / 𝑁 ) ) ↑ 𝑁 ) = 2 ) |
48 |
3
|
nncnd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
49 |
1
|
nncnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
50 |
1
|
nnne0d |
⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
51 |
48 49 50 29
|
expdivd |
⊢ ( 𝜑 → ( ( 𝐶 / 𝐴 ) ↑ 𝑁 ) = ( ( 𝐶 ↑ 𝑁 ) / ( 𝐴 ↑ 𝑁 ) ) ) |
52 |
51
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → ( ( 𝐶 / 𝐴 ) ↑ 𝑁 ) = ( ( 𝐶 ↑ 𝑁 ) / ( 𝐴 ↑ 𝑁 ) ) ) |
53 |
43 47 52
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → ( ( 2 ↑𝑐 ( 1 / 𝑁 ) ) ↑ 𝑁 ) = ( ( 𝐶 / 𝐴 ) ↑ 𝑁 ) ) |
54 |
23 27 28 53
|
exp11nnd |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → ( 2 ↑𝑐 ( 1 / 𝑁 ) ) = ( 𝐶 / 𝐴 ) ) |
55 |
16 54
|
mteqand |
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |