Step |
Hyp |
Ref |
Expression |
1 |
|
fltne.a |
|
2 |
|
fltne.b |
|
3 |
|
fltne.c |
|
4 |
|
fltne.n |
|
5 |
|
fltne.1 |
|
6 |
|
2prm |
|
7 |
|
rtprmirr |
|
8 |
6 4 7
|
sylancr |
|
9 |
8
|
eldifbd |
|
10 |
3
|
nnzd |
|
11 |
|
znq |
|
12 |
10 1 11
|
syl2anc |
|
13 |
|
eleq1a |
|
14 |
12 13
|
syl |
|
15 |
14
|
necon3bd |
|
16 |
9 15
|
mpd |
|
17 |
|
2rp |
|
18 |
17
|
a1i |
|
19 |
|
eluz2nn |
|
20 |
4 19
|
syl |
|
21 |
20
|
nnrecred |
|
22 |
18 21
|
rpcxpcld |
|
23 |
22
|
adantr |
|
24 |
3
|
nnrpd |
|
25 |
1
|
nnrpd |
|
26 |
24 25
|
rpdivcld |
|
27 |
26
|
adantr |
|
28 |
20
|
adantr |
|
29 |
20
|
nnnn0d |
|
30 |
1 29
|
nnexpcld |
|
31 |
30
|
adantr |
|
32 |
31
|
nncnd |
|
33 |
|
2cnd |
|
34 |
31
|
nnne0d |
|
35 |
30
|
nncnd |
|
36 |
35
|
times2d |
|
37 |
36
|
adantr |
|
38 |
|
simpr |
|
39 |
38
|
oveq1d |
|
40 |
39
|
oveq2d |
|
41 |
5
|
adantr |
|
42 |
37 40 41
|
3eqtrd |
|
43 |
32 33 34 42
|
mvllmuld |
|
44 |
|
2cn |
|
45 |
|
cxproot |
|
46 |
44 20 45
|
sylancr |
|
47 |
46
|
adantr |
|
48 |
3
|
nncnd |
|
49 |
1
|
nncnd |
|
50 |
1
|
nnne0d |
|
51 |
48 49 50 29
|
expdivd |
|
52 |
51
|
adantr |
|
53 |
43 47 52
|
3eqtr4d |
|
54 |
23 27 28 53
|
exp11nnd |
|
55 |
16 54
|
mteqand |
|