| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fltabcoprmex.a | ⊢ ( 𝜑  →  𝐴  ∈  ℕ ) | 
						
							| 2 |  | fltabcoprmex.b | ⊢ ( 𝜑  →  𝐵  ∈  ℕ ) | 
						
							| 3 |  | fltabcoprmex.c | ⊢ ( 𝜑  →  𝐶  ∈  ℕ ) | 
						
							| 4 |  | fltabcoprmex.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 5 |  | fltabcoprmex.1 | ⊢ ( 𝜑  →  ( ( 𝐴 ↑ 𝑁 )  +  ( 𝐵 ↑ 𝑁 ) )  =  ( 𝐶 ↑ 𝑁 ) ) | 
						
							| 6 |  | fltaccoprm.1 | ⊢ ( 𝜑  →  ( 𝐴  gcd  𝐵 )  =  1 ) | 
						
							| 7 |  | coprmgcdb | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  ( ∀ 𝑖  ∈  ℕ ( ( 𝑖  ∥  𝐴  ∧  𝑖  ∥  𝐵 )  →  𝑖  =  1 )  ↔  ( 𝐴  gcd  𝐵 )  =  1 ) ) | 
						
							| 8 | 1 2 7 | syl2anc | ⊢ ( 𝜑  →  ( ∀ 𝑖  ∈  ℕ ( ( 𝑖  ∥  𝐴  ∧  𝑖  ∥  𝐵 )  →  𝑖  =  1 )  ↔  ( 𝐴  gcd  𝐵 )  =  1 ) ) | 
						
							| 9 | 6 8 | mpbird | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  ℕ ( ( 𝑖  ∥  𝐴  ∧  𝑖  ∥  𝐵 )  →  𝑖  =  1 ) ) | 
						
							| 10 |  | simprl | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ℕ )  ∧  ( 𝑖  ∥  𝐴  ∧  𝑖  ∥  𝐶 ) )  →  𝑖  ∥  𝐴 ) | 
						
							| 11 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  𝑖  ∈  ℕ ) | 
						
							| 12 | 11 | nnzd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  𝑖  ∈  ℤ ) | 
						
							| 13 | 3 | nnzd | ⊢ ( 𝜑  →  𝐶  ∈  ℤ ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  𝐶  ∈  ℤ ) | 
						
							| 15 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  𝑁  ∈  ℕ0 ) | 
						
							| 16 |  | dvdsexpim | ⊢ ( ( 𝑖  ∈  ℤ  ∧  𝐶  ∈  ℤ  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑖  ∥  𝐶  →  ( 𝑖 ↑ 𝑁 )  ∥  ( 𝐶 ↑ 𝑁 ) ) ) | 
						
							| 17 | 12 14 15 16 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  ( 𝑖  ∥  𝐶  →  ( 𝑖 ↑ 𝑁 )  ∥  ( 𝐶 ↑ 𝑁 ) ) ) | 
						
							| 18 | 1 | nnzd | ⊢ ( 𝜑  →  𝐴  ∈  ℤ ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  𝐴  ∈  ℤ ) | 
						
							| 20 |  | dvdsexpim | ⊢ ( ( 𝑖  ∈  ℤ  ∧  𝐴  ∈  ℤ  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑖  ∥  𝐴  →  ( 𝑖 ↑ 𝑁 )  ∥  ( 𝐴 ↑ 𝑁 ) ) ) | 
						
							| 21 | 12 19 15 20 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  ( 𝑖  ∥  𝐴  →  ( 𝑖 ↑ 𝑁 )  ∥  ( 𝐴 ↑ 𝑁 ) ) ) | 
						
							| 22 | 17 21 | anim12d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  ( ( 𝑖  ∥  𝐶  ∧  𝑖  ∥  𝐴 )  →  ( ( 𝑖 ↑ 𝑁 )  ∥  ( 𝐶 ↑ 𝑁 )  ∧  ( 𝑖 ↑ 𝑁 )  ∥  ( 𝐴 ↑ 𝑁 ) ) ) ) | 
						
							| 23 | 22 | ancomsd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  ( ( 𝑖  ∥  𝐴  ∧  𝑖  ∥  𝐶 )  →  ( ( 𝑖 ↑ 𝑁 )  ∥  ( 𝐶 ↑ 𝑁 )  ∧  ( 𝑖 ↑ 𝑁 )  ∥  ( 𝐴 ↑ 𝑁 ) ) ) ) | 
						
							| 24 | 23 | imp | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ℕ )  ∧  ( 𝑖  ∥  𝐴  ∧  𝑖  ∥  𝐶 ) )  →  ( ( 𝑖 ↑ 𝑁 )  ∥  ( 𝐶 ↑ 𝑁 )  ∧  ( 𝑖 ↑ 𝑁 )  ∥  ( 𝐴 ↑ 𝑁 ) ) ) | 
						
							| 25 | 11 15 | nnexpcld | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  ( 𝑖 ↑ 𝑁 )  ∈  ℕ ) | 
						
							| 26 | 25 | nnzd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  ( 𝑖 ↑ 𝑁 )  ∈  ℤ ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ℕ )  ∧  ( 𝑖  ∥  𝐴  ∧  𝑖  ∥  𝐶 ) )  →  ( 𝑖 ↑ 𝑁 )  ∈  ℤ ) | 
						
							| 28 | 3 4 | nnexpcld | ⊢ ( 𝜑  →  ( 𝐶 ↑ 𝑁 )  ∈  ℕ ) | 
						
							| 29 | 28 | nnzd | ⊢ ( 𝜑  →  ( 𝐶 ↑ 𝑁 )  ∈  ℤ ) | 
						
							| 30 | 29 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ℕ )  ∧  ( 𝑖  ∥  𝐴  ∧  𝑖  ∥  𝐶 ) )  →  ( 𝐶 ↑ 𝑁 )  ∈  ℤ ) | 
						
							| 31 | 1 4 | nnexpcld | ⊢ ( 𝜑  →  ( 𝐴 ↑ 𝑁 )  ∈  ℕ ) | 
						
							| 32 | 31 | nnzd | ⊢ ( 𝜑  →  ( 𝐴 ↑ 𝑁 )  ∈  ℤ ) | 
						
							| 33 | 32 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ℕ )  ∧  ( 𝑖  ∥  𝐴  ∧  𝑖  ∥  𝐶 ) )  →  ( 𝐴 ↑ 𝑁 )  ∈  ℤ ) | 
						
							| 34 |  | dvds2sub | ⊢ ( ( ( 𝑖 ↑ 𝑁 )  ∈  ℤ  ∧  ( 𝐶 ↑ 𝑁 )  ∈  ℤ  ∧  ( 𝐴 ↑ 𝑁 )  ∈  ℤ )  →  ( ( ( 𝑖 ↑ 𝑁 )  ∥  ( 𝐶 ↑ 𝑁 )  ∧  ( 𝑖 ↑ 𝑁 )  ∥  ( 𝐴 ↑ 𝑁 ) )  →  ( 𝑖 ↑ 𝑁 )  ∥  ( ( 𝐶 ↑ 𝑁 )  −  ( 𝐴 ↑ 𝑁 ) ) ) ) | 
						
							| 35 | 27 30 33 34 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ℕ )  ∧  ( 𝑖  ∥  𝐴  ∧  𝑖  ∥  𝐶 ) )  →  ( ( ( 𝑖 ↑ 𝑁 )  ∥  ( 𝐶 ↑ 𝑁 )  ∧  ( 𝑖 ↑ 𝑁 )  ∥  ( 𝐴 ↑ 𝑁 ) )  →  ( 𝑖 ↑ 𝑁 )  ∥  ( ( 𝐶 ↑ 𝑁 )  −  ( 𝐴 ↑ 𝑁 ) ) ) ) | 
						
							| 36 | 24 35 | mpd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ℕ )  ∧  ( 𝑖  ∥  𝐴  ∧  𝑖  ∥  𝐶 ) )  →  ( 𝑖 ↑ 𝑁 )  ∥  ( ( 𝐶 ↑ 𝑁 )  −  ( 𝐴 ↑ 𝑁 ) ) ) | 
						
							| 37 | 1 | nncnd | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 38 | 37 4 | expcld | ⊢ ( 𝜑  →  ( 𝐴 ↑ 𝑁 )  ∈  ℂ ) | 
						
							| 39 | 2 | nncnd | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 40 | 39 4 | expcld | ⊢ ( 𝜑  →  ( 𝐵 ↑ 𝑁 )  ∈  ℂ ) | 
						
							| 41 | 38 40 5 | laddrotrd | ⊢ ( 𝜑  →  ( ( 𝐶 ↑ 𝑁 )  −  ( 𝐴 ↑ 𝑁 ) )  =  ( 𝐵 ↑ 𝑁 ) ) | 
						
							| 42 | 41 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ℕ )  ∧  ( 𝑖  ∥  𝐴  ∧  𝑖  ∥  𝐶 ) )  →  ( ( 𝐶 ↑ 𝑁 )  −  ( 𝐴 ↑ 𝑁 ) )  =  ( 𝐵 ↑ 𝑁 ) ) | 
						
							| 43 | 36 42 | breqtrd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ℕ )  ∧  ( 𝑖  ∥  𝐴  ∧  𝑖  ∥  𝐶 ) )  →  ( 𝑖 ↑ 𝑁 )  ∥  ( 𝐵 ↑ 𝑁 ) ) | 
						
							| 44 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ℕ )  ∧  ( 𝑖  ∥  𝐴  ∧  𝑖  ∥  𝐶 ) )  →  𝑖  ∈  ℕ ) | 
						
							| 45 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ℕ )  ∧  ( 𝑖  ∥  𝐴  ∧  𝑖  ∥  𝐶 ) )  →  𝐵  ∈  ℕ ) | 
						
							| 46 | 3 | nncnd | ⊢ ( 𝜑  →  𝐶  ∈  ℂ ) | 
						
							| 47 | 37 39 46 4 5 | flt0 | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 48 | 47 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ℕ )  ∧  ( 𝑖  ∥  𝐴  ∧  𝑖  ∥  𝐶 ) )  →  𝑁  ∈  ℕ ) | 
						
							| 49 |  | dvdsexpnn | ⊢ ( ( 𝑖  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 𝑖  ∥  𝐵  ↔  ( 𝑖 ↑ 𝑁 )  ∥  ( 𝐵 ↑ 𝑁 ) ) ) | 
						
							| 50 | 44 45 48 49 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ℕ )  ∧  ( 𝑖  ∥  𝐴  ∧  𝑖  ∥  𝐶 ) )  →  ( 𝑖  ∥  𝐵  ↔  ( 𝑖 ↑ 𝑁 )  ∥  ( 𝐵 ↑ 𝑁 ) ) ) | 
						
							| 51 | 43 50 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ℕ )  ∧  ( 𝑖  ∥  𝐴  ∧  𝑖  ∥  𝐶 ) )  →  𝑖  ∥  𝐵 ) | 
						
							| 52 | 10 51 | jca | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ℕ )  ∧  ( 𝑖  ∥  𝐴  ∧  𝑖  ∥  𝐶 ) )  →  ( 𝑖  ∥  𝐴  ∧  𝑖  ∥  𝐵 ) ) | 
						
							| 53 | 52 | ex | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  ( ( 𝑖  ∥  𝐴  ∧  𝑖  ∥  𝐶 )  →  ( 𝑖  ∥  𝐴  ∧  𝑖  ∥  𝐵 ) ) ) | 
						
							| 54 | 53 | imim1d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  ( ( ( 𝑖  ∥  𝐴  ∧  𝑖  ∥  𝐵 )  →  𝑖  =  1 )  →  ( ( 𝑖  ∥  𝐴  ∧  𝑖  ∥  𝐶 )  →  𝑖  =  1 ) ) ) | 
						
							| 55 | 54 | ralimdva | ⊢ ( 𝜑  →  ( ∀ 𝑖  ∈  ℕ ( ( 𝑖  ∥  𝐴  ∧  𝑖  ∥  𝐵 )  →  𝑖  =  1 )  →  ∀ 𝑖  ∈  ℕ ( ( 𝑖  ∥  𝐴  ∧  𝑖  ∥  𝐶 )  →  𝑖  =  1 ) ) ) | 
						
							| 56 | 9 55 | mpd | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  ℕ ( ( 𝑖  ∥  𝐴  ∧  𝑖  ∥  𝐶 )  →  𝑖  =  1 ) ) | 
						
							| 57 |  | coprmgcdb | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐶  ∈  ℕ )  →  ( ∀ 𝑖  ∈  ℕ ( ( 𝑖  ∥  𝐴  ∧  𝑖  ∥  𝐶 )  →  𝑖  =  1 )  ↔  ( 𝐴  gcd  𝐶 )  =  1 ) ) | 
						
							| 58 | 1 3 57 | syl2anc | ⊢ ( 𝜑  →  ( ∀ 𝑖  ∈  ℕ ( ( 𝑖  ∥  𝐴  ∧  𝑖  ∥  𝐶 )  →  𝑖  =  1 )  ↔  ( 𝐴  gcd  𝐶 )  =  1 ) ) | 
						
							| 59 | 56 58 | mpbid | ⊢ ( 𝜑  →  ( 𝐴  gcd  𝐶 )  =  1 ) |