Metamath Proof Explorer


Theorem fltaccoprm

Description: A counterexample to FLT with A , B coprime also has A , C coprime. (Contributed by SN, 20-Aug-2024)

Ref Expression
Hypotheses fltabcoprmex.a ( 𝜑𝐴 ∈ ℕ )
fltabcoprmex.b ( 𝜑𝐵 ∈ ℕ )
fltabcoprmex.c ( 𝜑𝐶 ∈ ℕ )
fltabcoprmex.n ( 𝜑𝑁 ∈ ℕ0 )
fltabcoprmex.1 ( 𝜑 → ( ( 𝐴𝑁 ) + ( 𝐵𝑁 ) ) = ( 𝐶𝑁 ) )
fltaccoprm.1 ( 𝜑 → ( 𝐴 gcd 𝐵 ) = 1 )
Assertion fltaccoprm ( 𝜑 → ( 𝐴 gcd 𝐶 ) = 1 )

Proof

Step Hyp Ref Expression
1 fltabcoprmex.a ( 𝜑𝐴 ∈ ℕ )
2 fltabcoprmex.b ( 𝜑𝐵 ∈ ℕ )
3 fltabcoprmex.c ( 𝜑𝐶 ∈ ℕ )
4 fltabcoprmex.n ( 𝜑𝑁 ∈ ℕ0 )
5 fltabcoprmex.1 ( 𝜑 → ( ( 𝐴𝑁 ) + ( 𝐵𝑁 ) ) = ( 𝐶𝑁 ) )
6 fltaccoprm.1 ( 𝜑 → ( 𝐴 gcd 𝐵 ) = 1 )
7 coprmgcdb ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ∀ 𝑖 ∈ ℕ ( ( 𝑖𝐴𝑖𝐵 ) → 𝑖 = 1 ) ↔ ( 𝐴 gcd 𝐵 ) = 1 ) )
8 1 2 7 syl2anc ( 𝜑 → ( ∀ 𝑖 ∈ ℕ ( ( 𝑖𝐴𝑖𝐵 ) → 𝑖 = 1 ) ↔ ( 𝐴 gcd 𝐵 ) = 1 ) )
9 6 8 mpbird ( 𝜑 → ∀ 𝑖 ∈ ℕ ( ( 𝑖𝐴𝑖𝐵 ) → 𝑖 = 1 ) )
10 simprl ( ( ( 𝜑𝑖 ∈ ℕ ) ∧ ( 𝑖𝐴𝑖𝐶 ) ) → 𝑖𝐴 )
11 simpr ( ( 𝜑𝑖 ∈ ℕ ) → 𝑖 ∈ ℕ )
12 11 nnzd ( ( 𝜑𝑖 ∈ ℕ ) → 𝑖 ∈ ℤ )
13 3 nnzd ( 𝜑𝐶 ∈ ℤ )
14 13 adantr ( ( 𝜑𝑖 ∈ ℕ ) → 𝐶 ∈ ℤ )
15 4 adantr ( ( 𝜑𝑖 ∈ ℕ ) → 𝑁 ∈ ℕ0 )
16 dvdsexpim ( ( 𝑖 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑖𝐶 → ( 𝑖𝑁 ) ∥ ( 𝐶𝑁 ) ) )
17 12 14 15 16 syl3anc ( ( 𝜑𝑖 ∈ ℕ ) → ( 𝑖𝐶 → ( 𝑖𝑁 ) ∥ ( 𝐶𝑁 ) ) )
18 1 nnzd ( 𝜑𝐴 ∈ ℤ )
19 18 adantr ( ( 𝜑𝑖 ∈ ℕ ) → 𝐴 ∈ ℤ )
20 dvdsexpim ( ( 𝑖 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑖𝐴 → ( 𝑖𝑁 ) ∥ ( 𝐴𝑁 ) ) )
21 12 19 15 20 syl3anc ( ( 𝜑𝑖 ∈ ℕ ) → ( 𝑖𝐴 → ( 𝑖𝑁 ) ∥ ( 𝐴𝑁 ) ) )
22 17 21 anim12d ( ( 𝜑𝑖 ∈ ℕ ) → ( ( 𝑖𝐶𝑖𝐴 ) → ( ( 𝑖𝑁 ) ∥ ( 𝐶𝑁 ) ∧ ( 𝑖𝑁 ) ∥ ( 𝐴𝑁 ) ) ) )
23 22 ancomsd ( ( 𝜑𝑖 ∈ ℕ ) → ( ( 𝑖𝐴𝑖𝐶 ) → ( ( 𝑖𝑁 ) ∥ ( 𝐶𝑁 ) ∧ ( 𝑖𝑁 ) ∥ ( 𝐴𝑁 ) ) ) )
24 23 imp ( ( ( 𝜑𝑖 ∈ ℕ ) ∧ ( 𝑖𝐴𝑖𝐶 ) ) → ( ( 𝑖𝑁 ) ∥ ( 𝐶𝑁 ) ∧ ( 𝑖𝑁 ) ∥ ( 𝐴𝑁 ) ) )
25 11 15 nnexpcld ( ( 𝜑𝑖 ∈ ℕ ) → ( 𝑖𝑁 ) ∈ ℕ )
26 25 nnzd ( ( 𝜑𝑖 ∈ ℕ ) → ( 𝑖𝑁 ) ∈ ℤ )
27 26 adantr ( ( ( 𝜑𝑖 ∈ ℕ ) ∧ ( 𝑖𝐴𝑖𝐶 ) ) → ( 𝑖𝑁 ) ∈ ℤ )
28 3 4 nnexpcld ( 𝜑 → ( 𝐶𝑁 ) ∈ ℕ )
29 28 nnzd ( 𝜑 → ( 𝐶𝑁 ) ∈ ℤ )
30 29 ad2antrr ( ( ( 𝜑𝑖 ∈ ℕ ) ∧ ( 𝑖𝐴𝑖𝐶 ) ) → ( 𝐶𝑁 ) ∈ ℤ )
31 1 4 nnexpcld ( 𝜑 → ( 𝐴𝑁 ) ∈ ℕ )
32 31 nnzd ( 𝜑 → ( 𝐴𝑁 ) ∈ ℤ )
33 32 ad2antrr ( ( ( 𝜑𝑖 ∈ ℕ ) ∧ ( 𝑖𝐴𝑖𝐶 ) ) → ( 𝐴𝑁 ) ∈ ℤ )
34 dvds2sub ( ( ( 𝑖𝑁 ) ∈ ℤ ∧ ( 𝐶𝑁 ) ∈ ℤ ∧ ( 𝐴𝑁 ) ∈ ℤ ) → ( ( ( 𝑖𝑁 ) ∥ ( 𝐶𝑁 ) ∧ ( 𝑖𝑁 ) ∥ ( 𝐴𝑁 ) ) → ( 𝑖𝑁 ) ∥ ( ( 𝐶𝑁 ) − ( 𝐴𝑁 ) ) ) )
35 27 30 33 34 syl3anc ( ( ( 𝜑𝑖 ∈ ℕ ) ∧ ( 𝑖𝐴𝑖𝐶 ) ) → ( ( ( 𝑖𝑁 ) ∥ ( 𝐶𝑁 ) ∧ ( 𝑖𝑁 ) ∥ ( 𝐴𝑁 ) ) → ( 𝑖𝑁 ) ∥ ( ( 𝐶𝑁 ) − ( 𝐴𝑁 ) ) ) )
36 24 35 mpd ( ( ( 𝜑𝑖 ∈ ℕ ) ∧ ( 𝑖𝐴𝑖𝐶 ) ) → ( 𝑖𝑁 ) ∥ ( ( 𝐶𝑁 ) − ( 𝐴𝑁 ) ) )
37 1 nncnd ( 𝜑𝐴 ∈ ℂ )
38 37 4 expcld ( 𝜑 → ( 𝐴𝑁 ) ∈ ℂ )
39 2 nncnd ( 𝜑𝐵 ∈ ℂ )
40 39 4 expcld ( 𝜑 → ( 𝐵𝑁 ) ∈ ℂ )
41 38 40 5 laddrotrd ( 𝜑 → ( ( 𝐶𝑁 ) − ( 𝐴𝑁 ) ) = ( 𝐵𝑁 ) )
42 41 ad2antrr ( ( ( 𝜑𝑖 ∈ ℕ ) ∧ ( 𝑖𝐴𝑖𝐶 ) ) → ( ( 𝐶𝑁 ) − ( 𝐴𝑁 ) ) = ( 𝐵𝑁 ) )
43 36 42 breqtrd ( ( ( 𝜑𝑖 ∈ ℕ ) ∧ ( 𝑖𝐴𝑖𝐶 ) ) → ( 𝑖𝑁 ) ∥ ( 𝐵𝑁 ) )
44 simplr ( ( ( 𝜑𝑖 ∈ ℕ ) ∧ ( 𝑖𝐴𝑖𝐶 ) ) → 𝑖 ∈ ℕ )
45 2 ad2antrr ( ( ( 𝜑𝑖 ∈ ℕ ) ∧ ( 𝑖𝐴𝑖𝐶 ) ) → 𝐵 ∈ ℕ )
46 3 nncnd ( 𝜑𝐶 ∈ ℂ )
47 37 39 46 4 5 flt0 ( 𝜑𝑁 ∈ ℕ )
48 47 ad2antrr ( ( ( 𝜑𝑖 ∈ ℕ ) ∧ ( 𝑖𝐴𝑖𝐶 ) ) → 𝑁 ∈ ℕ )
49 dvdsexpnn ( ( 𝑖 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑖𝐵 ↔ ( 𝑖𝑁 ) ∥ ( 𝐵𝑁 ) ) )
50 44 45 48 49 syl3anc ( ( ( 𝜑𝑖 ∈ ℕ ) ∧ ( 𝑖𝐴𝑖𝐶 ) ) → ( 𝑖𝐵 ↔ ( 𝑖𝑁 ) ∥ ( 𝐵𝑁 ) ) )
51 43 50 mpbird ( ( ( 𝜑𝑖 ∈ ℕ ) ∧ ( 𝑖𝐴𝑖𝐶 ) ) → 𝑖𝐵 )
52 10 51 jca ( ( ( 𝜑𝑖 ∈ ℕ ) ∧ ( 𝑖𝐴𝑖𝐶 ) ) → ( 𝑖𝐴𝑖𝐵 ) )
53 52 ex ( ( 𝜑𝑖 ∈ ℕ ) → ( ( 𝑖𝐴𝑖𝐶 ) → ( 𝑖𝐴𝑖𝐵 ) ) )
54 53 imim1d ( ( 𝜑𝑖 ∈ ℕ ) → ( ( ( 𝑖𝐴𝑖𝐵 ) → 𝑖 = 1 ) → ( ( 𝑖𝐴𝑖𝐶 ) → 𝑖 = 1 ) ) )
55 54 ralimdva ( 𝜑 → ( ∀ 𝑖 ∈ ℕ ( ( 𝑖𝐴𝑖𝐵 ) → 𝑖 = 1 ) → ∀ 𝑖 ∈ ℕ ( ( 𝑖𝐴𝑖𝐶 ) → 𝑖 = 1 ) ) )
56 9 55 mpd ( 𝜑 → ∀ 𝑖 ∈ ℕ ( ( 𝑖𝐴𝑖𝐶 ) → 𝑖 = 1 ) )
57 coprmgcdb ( ( 𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ∀ 𝑖 ∈ ℕ ( ( 𝑖𝐴𝑖𝐶 ) → 𝑖 = 1 ) ↔ ( 𝐴 gcd 𝐶 ) = 1 ) )
58 1 3 57 syl2anc ( 𝜑 → ( ∀ 𝑖 ∈ ℕ ( ( 𝑖𝐴𝑖𝐶 ) → 𝑖 = 1 ) ↔ ( 𝐴 gcd 𝐶 ) = 1 ) )
59 56 58 mpbid ( 𝜑 → ( 𝐴 gcd 𝐶 ) = 1 )