Step |
Hyp |
Ref |
Expression |
1 |
|
fltabcoprmex.a |
⊢ ( 𝜑 → 𝐴 ∈ ℕ ) |
2 |
|
fltabcoprmex.b |
⊢ ( 𝜑 → 𝐵 ∈ ℕ ) |
3 |
|
fltabcoprmex.c |
⊢ ( 𝜑 → 𝐶 ∈ ℕ ) |
4 |
|
fltabcoprmex.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
5 |
|
fltabcoprmex.1 |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 𝑁 ) + ( 𝐵 ↑ 𝑁 ) ) = ( 𝐶 ↑ 𝑁 ) ) |
6 |
|
fltaccoprm.1 |
⊢ ( 𝜑 → ( 𝐴 gcd 𝐵 ) = 1 ) |
7 |
|
coprmgcdb |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ∀ 𝑖 ∈ ℕ ( ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) → 𝑖 = 1 ) ↔ ( 𝐴 gcd 𝐵 ) = 1 ) ) |
8 |
1 2 7
|
syl2anc |
⊢ ( 𝜑 → ( ∀ 𝑖 ∈ ℕ ( ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) → 𝑖 = 1 ) ↔ ( 𝐴 gcd 𝐵 ) = 1 ) ) |
9 |
6 8
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ℕ ( ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) → 𝑖 = 1 ) ) |
10 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐶 ) ) → 𝑖 ∥ 𝐴 ) |
11 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → 𝑖 ∈ ℕ ) |
12 |
11
|
nnzd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → 𝑖 ∈ ℤ ) |
13 |
3
|
nnzd |
⊢ ( 𝜑 → 𝐶 ∈ ℤ ) |
14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → 𝐶 ∈ ℤ ) |
15 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → 𝑁 ∈ ℕ0 ) |
16 |
|
dvdsexpim |
⊢ ( ( 𝑖 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑖 ∥ 𝐶 → ( 𝑖 ↑ 𝑁 ) ∥ ( 𝐶 ↑ 𝑁 ) ) ) |
17 |
12 14 15 16
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( 𝑖 ∥ 𝐶 → ( 𝑖 ↑ 𝑁 ) ∥ ( 𝐶 ↑ 𝑁 ) ) ) |
18 |
1
|
nnzd |
⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
19 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → 𝐴 ∈ ℤ ) |
20 |
|
dvdsexpim |
⊢ ( ( 𝑖 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑖 ∥ 𝐴 → ( 𝑖 ↑ 𝑁 ) ∥ ( 𝐴 ↑ 𝑁 ) ) ) |
21 |
12 19 15 20
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( 𝑖 ∥ 𝐴 → ( 𝑖 ↑ 𝑁 ) ∥ ( 𝐴 ↑ 𝑁 ) ) ) |
22 |
17 21
|
anim12d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( ( 𝑖 ∥ 𝐶 ∧ 𝑖 ∥ 𝐴 ) → ( ( 𝑖 ↑ 𝑁 ) ∥ ( 𝐶 ↑ 𝑁 ) ∧ ( 𝑖 ↑ 𝑁 ) ∥ ( 𝐴 ↑ 𝑁 ) ) ) ) |
23 |
22
|
ancomsd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐶 ) → ( ( 𝑖 ↑ 𝑁 ) ∥ ( 𝐶 ↑ 𝑁 ) ∧ ( 𝑖 ↑ 𝑁 ) ∥ ( 𝐴 ↑ 𝑁 ) ) ) ) |
24 |
23
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐶 ) ) → ( ( 𝑖 ↑ 𝑁 ) ∥ ( 𝐶 ↑ 𝑁 ) ∧ ( 𝑖 ↑ 𝑁 ) ∥ ( 𝐴 ↑ 𝑁 ) ) ) |
25 |
11 15
|
nnexpcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( 𝑖 ↑ 𝑁 ) ∈ ℕ ) |
26 |
25
|
nnzd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( 𝑖 ↑ 𝑁 ) ∈ ℤ ) |
27 |
26
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐶 ) ) → ( 𝑖 ↑ 𝑁 ) ∈ ℤ ) |
28 |
3 4
|
nnexpcld |
⊢ ( 𝜑 → ( 𝐶 ↑ 𝑁 ) ∈ ℕ ) |
29 |
28
|
nnzd |
⊢ ( 𝜑 → ( 𝐶 ↑ 𝑁 ) ∈ ℤ ) |
30 |
29
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐶 ) ) → ( 𝐶 ↑ 𝑁 ) ∈ ℤ ) |
31 |
1 4
|
nnexpcld |
⊢ ( 𝜑 → ( 𝐴 ↑ 𝑁 ) ∈ ℕ ) |
32 |
31
|
nnzd |
⊢ ( 𝜑 → ( 𝐴 ↑ 𝑁 ) ∈ ℤ ) |
33 |
32
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐶 ) ) → ( 𝐴 ↑ 𝑁 ) ∈ ℤ ) |
34 |
|
dvds2sub |
⊢ ( ( ( 𝑖 ↑ 𝑁 ) ∈ ℤ ∧ ( 𝐶 ↑ 𝑁 ) ∈ ℤ ∧ ( 𝐴 ↑ 𝑁 ) ∈ ℤ ) → ( ( ( 𝑖 ↑ 𝑁 ) ∥ ( 𝐶 ↑ 𝑁 ) ∧ ( 𝑖 ↑ 𝑁 ) ∥ ( 𝐴 ↑ 𝑁 ) ) → ( 𝑖 ↑ 𝑁 ) ∥ ( ( 𝐶 ↑ 𝑁 ) − ( 𝐴 ↑ 𝑁 ) ) ) ) |
35 |
27 30 33 34
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐶 ) ) → ( ( ( 𝑖 ↑ 𝑁 ) ∥ ( 𝐶 ↑ 𝑁 ) ∧ ( 𝑖 ↑ 𝑁 ) ∥ ( 𝐴 ↑ 𝑁 ) ) → ( 𝑖 ↑ 𝑁 ) ∥ ( ( 𝐶 ↑ 𝑁 ) − ( 𝐴 ↑ 𝑁 ) ) ) ) |
36 |
24 35
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐶 ) ) → ( 𝑖 ↑ 𝑁 ) ∥ ( ( 𝐶 ↑ 𝑁 ) − ( 𝐴 ↑ 𝑁 ) ) ) |
37 |
1
|
nncnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
38 |
37 4
|
expcld |
⊢ ( 𝜑 → ( 𝐴 ↑ 𝑁 ) ∈ ℂ ) |
39 |
2
|
nncnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
40 |
39 4
|
expcld |
⊢ ( 𝜑 → ( 𝐵 ↑ 𝑁 ) ∈ ℂ ) |
41 |
38 40 5
|
laddrotrd |
⊢ ( 𝜑 → ( ( 𝐶 ↑ 𝑁 ) − ( 𝐴 ↑ 𝑁 ) ) = ( 𝐵 ↑ 𝑁 ) ) |
42 |
41
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐶 ) ) → ( ( 𝐶 ↑ 𝑁 ) − ( 𝐴 ↑ 𝑁 ) ) = ( 𝐵 ↑ 𝑁 ) ) |
43 |
36 42
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐶 ) ) → ( 𝑖 ↑ 𝑁 ) ∥ ( 𝐵 ↑ 𝑁 ) ) |
44 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐶 ) ) → 𝑖 ∈ ℕ ) |
45 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐶 ) ) → 𝐵 ∈ ℕ ) |
46 |
3
|
nncnd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
47 |
37 39 46 4 5
|
flt0 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
48 |
47
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐶 ) ) → 𝑁 ∈ ℕ ) |
49 |
|
dvdsexpnn |
⊢ ( ( 𝑖 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑖 ∥ 𝐵 ↔ ( 𝑖 ↑ 𝑁 ) ∥ ( 𝐵 ↑ 𝑁 ) ) ) |
50 |
44 45 48 49
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐶 ) ) → ( 𝑖 ∥ 𝐵 ↔ ( 𝑖 ↑ 𝑁 ) ∥ ( 𝐵 ↑ 𝑁 ) ) ) |
51 |
43 50
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐶 ) ) → 𝑖 ∥ 𝐵 ) |
52 |
10 51
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐶 ) ) → ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) |
53 |
52
|
ex |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐶 ) → ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) ) |
54 |
53
|
imim1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( ( ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) → 𝑖 = 1 ) → ( ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐶 ) → 𝑖 = 1 ) ) ) |
55 |
54
|
ralimdva |
⊢ ( 𝜑 → ( ∀ 𝑖 ∈ ℕ ( ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) → 𝑖 = 1 ) → ∀ 𝑖 ∈ ℕ ( ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐶 ) → 𝑖 = 1 ) ) ) |
56 |
9 55
|
mpd |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ℕ ( ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐶 ) → 𝑖 = 1 ) ) |
57 |
|
coprmgcdb |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ∀ 𝑖 ∈ ℕ ( ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐶 ) → 𝑖 = 1 ) ↔ ( 𝐴 gcd 𝐶 ) = 1 ) ) |
58 |
1 3 57
|
syl2anc |
⊢ ( 𝜑 → ( ∀ 𝑖 ∈ ℕ ( ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐶 ) → 𝑖 = 1 ) ↔ ( 𝐴 gcd 𝐶 ) = 1 ) ) |
59 |
56 58
|
mpbid |
⊢ ( 𝜑 → ( 𝐴 gcd 𝐶 ) = 1 ) |