Step |
Hyp |
Ref |
Expression |
1 |
|
flt0.a |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
2 |
|
flt0.b |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
3 |
|
flt0.c |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
4 |
|
flt0.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
5 |
|
flt0.1 |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 𝑁 ) + ( 𝐵 ↑ 𝑁 ) ) = ( 𝐶 ↑ 𝑁 ) ) |
6 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
7 |
|
sn-1ne2 |
⊢ 1 ≠ 2 |
8 |
7
|
necomi |
⊢ 2 ≠ 1 |
9 |
6 8
|
eqnetri |
⊢ ( 1 + 1 ) ≠ 1 |
10 |
9
|
a1i |
⊢ ( 𝜑 → ( 1 + 1 ) ≠ 1 ) |
11 |
1
|
exp0d |
⊢ ( 𝜑 → ( 𝐴 ↑ 0 ) = 1 ) |
12 |
2
|
exp0d |
⊢ ( 𝜑 → ( 𝐵 ↑ 0 ) = 1 ) |
13 |
11 12
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 0 ) + ( 𝐵 ↑ 0 ) ) = ( 1 + 1 ) ) |
14 |
3
|
exp0d |
⊢ ( 𝜑 → ( 𝐶 ↑ 0 ) = 1 ) |
15 |
10 13 14
|
3netr4d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 0 ) + ( 𝐵 ↑ 0 ) ) ≠ ( 𝐶 ↑ 0 ) ) |
16 |
|
oveq2 |
⊢ ( 𝑁 = 0 → ( 𝐴 ↑ 𝑁 ) = ( 𝐴 ↑ 0 ) ) |
17 |
|
oveq2 |
⊢ ( 𝑁 = 0 → ( 𝐵 ↑ 𝑁 ) = ( 𝐵 ↑ 0 ) ) |
18 |
16 17
|
oveq12d |
⊢ ( 𝑁 = 0 → ( ( 𝐴 ↑ 𝑁 ) + ( 𝐵 ↑ 𝑁 ) ) = ( ( 𝐴 ↑ 0 ) + ( 𝐵 ↑ 0 ) ) ) |
19 |
|
oveq2 |
⊢ ( 𝑁 = 0 → ( 𝐶 ↑ 𝑁 ) = ( 𝐶 ↑ 0 ) ) |
20 |
18 19
|
eqeq12d |
⊢ ( 𝑁 = 0 → ( ( ( 𝐴 ↑ 𝑁 ) + ( 𝐵 ↑ 𝑁 ) ) = ( 𝐶 ↑ 𝑁 ) ↔ ( ( 𝐴 ↑ 0 ) + ( 𝐵 ↑ 0 ) ) = ( 𝐶 ↑ 0 ) ) ) |
21 |
5 20
|
syl5ibcom |
⊢ ( 𝜑 → ( 𝑁 = 0 → ( ( 𝐴 ↑ 0 ) + ( 𝐵 ↑ 0 ) ) = ( 𝐶 ↑ 0 ) ) ) |
22 |
21
|
imp |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → ( ( 𝐴 ↑ 0 ) + ( 𝐵 ↑ 0 ) ) = ( 𝐶 ↑ 0 ) ) |
23 |
15 22
|
mteqand |
⊢ ( 𝜑 → 𝑁 ≠ 0 ) |
24 |
|
elnnne0 |
⊢ ( 𝑁 ∈ ℕ ↔ ( 𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ) ) |
25 |
4 23 24
|
sylanbrc |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |