| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0ne1 |
⊢ 0 ≠ 1 |
| 2 |
|
ax-icn |
⊢ i ∈ ℂ |
| 3 |
2 2
|
mulcli |
⊢ ( i · i ) ∈ ℂ |
| 4 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 5 |
3 4 4
|
addassi |
⊢ ( ( ( i · i ) + 1 ) + 1 ) = ( ( i · i ) + ( 1 + 1 ) ) |
| 6 |
5
|
a1i |
⊢ ( ( 0 = ( 0 + 0 ) ∧ 1 = ( 1 + 1 ) ) → ( ( ( i · i ) + 1 ) + 1 ) = ( ( i · i ) + ( 1 + 1 ) ) ) |
| 7 |
|
simpr |
⊢ ( ( 0 = ( 0 + 0 ) ∧ 1 = ( 1 + 1 ) ) → 1 = ( 1 + 1 ) ) |
| 8 |
7
|
oveq2d |
⊢ ( ( 0 = ( 0 + 0 ) ∧ 1 = ( 1 + 1 ) ) → ( ( i · i ) + 1 ) = ( ( i · i ) + ( 1 + 1 ) ) ) |
| 9 |
|
ax-i2m1 |
⊢ ( ( i · i ) + 1 ) = 0 |
| 10 |
9
|
a1i |
⊢ ( ( 0 = ( 0 + 0 ) ∧ 1 = ( 1 + 1 ) ) → ( ( i · i ) + 1 ) = 0 ) |
| 11 |
6 8 10
|
3eqtr2rd |
⊢ ( ( 0 = ( 0 + 0 ) ∧ 1 = ( 1 + 1 ) ) → 0 = ( ( ( i · i ) + 1 ) + 1 ) ) |
| 12 |
|
simpl |
⊢ ( ( 0 = ( 0 + 0 ) ∧ 1 = ( 1 + 1 ) ) → 0 = ( 0 + 0 ) ) |
| 13 |
10
|
oveq1d |
⊢ ( ( 0 = ( 0 + 0 ) ∧ 1 = ( 1 + 1 ) ) → ( ( ( i · i ) + 1 ) + 1 ) = ( 0 + 1 ) ) |
| 14 |
11 12 13
|
3eqtr3d |
⊢ ( ( 0 = ( 0 + 0 ) ∧ 1 = ( 1 + 1 ) ) → ( 0 + 0 ) = ( 0 + 1 ) ) |
| 15 |
|
0red |
⊢ ( ( 0 = ( 0 + 0 ) ∧ 1 = ( 1 + 1 ) ) → 0 ∈ ℝ ) |
| 16 |
|
1red |
⊢ ( ( 0 = ( 0 + 0 ) ∧ 1 = ( 1 + 1 ) ) → 1 ∈ ℝ ) |
| 17 |
|
readdcan |
⊢ ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( 0 + 0 ) = ( 0 + 1 ) ↔ 0 = 1 ) ) |
| 18 |
15 16 15 17
|
syl3anc |
⊢ ( ( 0 = ( 0 + 0 ) ∧ 1 = ( 1 + 1 ) ) → ( ( 0 + 0 ) = ( 0 + 1 ) ↔ 0 = 1 ) ) |
| 19 |
14 18
|
mpbid |
⊢ ( ( 0 = ( 0 + 0 ) ∧ 1 = ( 1 + 1 ) ) → 0 = 1 ) |
| 20 |
19
|
ex |
⊢ ( 0 = ( 0 + 0 ) → ( 1 = ( 1 + 1 ) → 0 = 1 ) ) |
| 21 |
20
|
necon3d |
⊢ ( 0 = ( 0 + 0 ) → ( 0 ≠ 1 → 1 ≠ ( 1 + 1 ) ) ) |
| 22 |
1 21
|
mpi |
⊢ ( 0 = ( 0 + 0 ) → 1 ≠ ( 1 + 1 ) ) |
| 23 |
|
oveq2 |
⊢ ( 1 = ( 1 + 1 ) → ( 0 · 1 ) = ( 0 · ( 1 + 1 ) ) ) |
| 24 |
|
0re |
⊢ 0 ∈ ℝ |
| 25 |
|
ax-1rid |
⊢ ( 0 ∈ ℝ → ( 0 · 1 ) = 0 ) |
| 26 |
24 25
|
ax-mp |
⊢ ( 0 · 1 ) = 0 |
| 27 |
|
0cn |
⊢ 0 ∈ ℂ |
| 28 |
27 4 4
|
adddii |
⊢ ( 0 · ( 1 + 1 ) ) = ( ( 0 · 1 ) + ( 0 · 1 ) ) |
| 29 |
26 26
|
oveq12i |
⊢ ( ( 0 · 1 ) + ( 0 · 1 ) ) = ( 0 + 0 ) |
| 30 |
28 29
|
eqtri |
⊢ ( 0 · ( 1 + 1 ) ) = ( 0 + 0 ) |
| 31 |
23 26 30
|
3eqtr3g |
⊢ ( 1 = ( 1 + 1 ) → 0 = ( 0 + 0 ) ) |
| 32 |
31
|
necon3i |
⊢ ( 0 ≠ ( 0 + 0 ) → 1 ≠ ( 1 + 1 ) ) |
| 33 |
22 32
|
pm2.61ine |
⊢ 1 ≠ ( 1 + 1 ) |
| 34 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
| 35 |
33 34
|
neeqtrri |
⊢ 1 ≠ 2 |